Biodiversity and Conservation

, Volume 22, Issue 1, pp 253–268 | Cite as

Trait-dependent declines of species following conversion of rain forest to oil palm plantations

  • Michael J. M. Senior
  • Keith C. Hamer
  • Simon Bottrell
  • David P. Edwards
  • Tom M. Fayle
  • Jennifer M. Lucey
  • Peter J. Mayhew
  • Robert Newton
  • Kelvin S.-H. Peh
  • Frederick H. Sheldon
  • Christopher Stewart
  • Alison R. Styring
  • Michael D. F. Thom
  • Paul Woodcock
  • Jane K. Hill
Original Paper

Abstract

Conversion of natural habitats to agriculture reduces species richness, particularly in highly diverse tropical regions, but its effects on species composition are less well-studied. The conversion of rain forest to oil palm is of particular conservation concern globally, and we examined how it affects the abundance of birds, beetles, and ants according to their local population size, body size, geographical range size, and feeding guild or trophic position. We re-analysed data from six published studies representing 487 species/genera to assess the relative importance of these traits in explaining changes in abundance following forest conversion. We found consistent patterns across all three taxa, with large-bodied, abundant forest species from higher trophic levels, declining most in abundance following conversion of forest to oil palm. Best-fitting models explained 39–66 % of the variation in abundance changes for the three taxa, and included all ecological traits that we considered. Across the three taxa, those few species found in oil palm tended to be small-bodied species, from lower trophic levels, that had low local abundances in forest. These species were often hyper-abundant in oil palm plantations. These results provide empirical evidence of consistent responses to land-use change among taxonomic groups in relation to ecological traits.

Keywords

Biodiversity Elaeis guineensis Malaysia SE Asia Stable isotope 

Supplementary material

10531_2012_419_MOESM1_ESM.doc (35 kb)
Supplementary material 1 (DOC 35 kb)

References

  1. Aratrakorn S, Thunhikorn S, Donald PF (2006) Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird Conserv Int 16:71–82CrossRefGoogle Scholar
  2. Attwood SJ, Maron M, House APN, Zammit C (2008) Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob Ecol Biogeogr 17:585–599CrossRefGoogle Scholar
  3. Bernard H, Fjeldså J, Mohamed M (2009) A case study on the effects of disturbance and conversion of tropical lowland rain forest on the non-volant small mammals in north Borneo: management implications. Mamm Study 34:85–96CrossRefGoogle Scholar
  4. Berry NJ, Phillips OL, Lewis SL, Hill JK, Edwards DP, Tawatao NB, Ahmad N, Magintan D, Khen CV, Maryati M, Ong RC, Hamer KC (2010) The high value of logged tropical forests: lessons from northern Borneo. Biodivers Conserv 19:985–997CrossRefGoogle Scholar
  5. Birdlife International (2011) Species factsheets. Birdlife International, Cambridge. http://www.birdlife.org. Accessed Dec 2010
  6. Blüthgen N, Gebauer G, Fiedler K (2003) Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426–435PubMedCrossRefGoogle Scholar
  7. Bolton B, Alpert G, Ward PS, Nasrecki P (2006) Bolton’s catalogue of ants of the world. Harvard University Press, CambridgeGoogle Scholar
  8. Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF, Lyal CHC, Newton AF, Reid CAM, Schmitt M, Slipiński SA, Smith ABT (2011) Family-group names in Coleoptera (Insecta). Zookeys 88:1–972PubMedCrossRefGoogle Scholar
  9. Brühl CA, Eltz T (2010) Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodivers Conserv 19:519–529CrossRefGoogle Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  11. Butler RA, Laurance WF (2009) Is oil palm the next emerging threat to the Amazon? Trop Conserv Sci 2:1–10Google Scholar
  12. Chey VK (2006) Impacts of forest conversion on biodiversity as indicated by moths. Malay Nat J 57:383–418Google Scholar
  13. Chung AYC, Eggleton P, Speight MR, Hammond PM, Chey VK (2000) The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Bull Entomol Res 90:475–496PubMedCrossRefGoogle Scholar
  14. Cleary DFR, Boyle TJB, Setyawati T, Anggraeni CD, Loon EEV, Menken SBJ (2007) Bird species and traits associated with logged and unlogged forest in Borneo. Ecol Appl 17:1184–1197PubMedCrossRefGoogle Scholar
  15. Damuth J (1981) Population density and body size in mammals. Nature 290:699–700CrossRefGoogle Scholar
  16. Danielsen F, Heegaard M (1995) Impact of logging and plantation development on species diversity: a case study from Sumatra. In: Sandbukt O (ed) Management of tropical forests: towards an integrated perspective. University of Oslo—Centre for Development and the Environment, OsloGoogle Scholar
  17. Danielsen F, Beukema H, Burgess ND, Parish F, Bruhl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23:348–358PubMedCrossRefGoogle Scholar
  18. De Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen J, Bardgett R, Berg M, Cipriotti P, Feld C, Hering D, Martins Da Silva P, Potts S, Sandin L, Sousa J, Storkey J, Wardle D, Harrison P (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893CrossRefGoogle Scholar
  19. Dunning JB Jr. (2009) CRC handbook of avian body masses, 2nd edn. Taylor & Francis, Boca RatonGoogle Scholar
  20. Edwards DP, Larsen TH, Docherty TDS, Ansell F, Hsu A, Derhé MA, Hamer KC, Wilcove DS (2011) Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc R Soc Lond B 278:82–90CrossRefGoogle Scholar
  21. Faraway JJ (2006) Extending the linear model with R. CRC Press, Boca RatonGoogle Scholar
  22. Fayle TM, Turner EC, Snaddon JL, Chey VK, Chung AYC, Eggleton P, Foster WA (2010) Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl Ecol 11:337–345CrossRefGoogle Scholar
  23. Fazey I, Fischer J, Lindenmayer DB (2005) What do conservation biologists publish? Biol Conserv 124:63–73CrossRefGoogle Scholar
  24. Feeley KJ, Terborgh JW (2006) Habitat fragmentation and effects of herbivore (Howler Monkey) abundances on bird species richness. Ecology 87:144–150PubMedCrossRefGoogle Scholar
  25. Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Bruhl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23:538–545PubMedCrossRefGoogle Scholar
  26. Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MDF, Broad GR, Chung AYC, Eggleton P, Khen CV, Yusah KM (2011) Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philos Trans R Soc B 366:3277–3291CrossRefGoogle Scholar
  27. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726PubMedCrossRefGoogle Scholar
  28. Gardner TA, Ribeiro-Junior MA, Barlow J, Avila-Pires TCS, Hoogmoed MS, Peres CA (2007) The value of primary, secondary, and plantation forests for a neotropical herpetofauna. Conserv Biol 21:775–787PubMedCrossRefGoogle Scholar
  29. Gibb H, Cunningham SA (2011) Habitat contrasts reveal a shift in the trophic position of ant assemblages. J Anim Ecol 80:119–127PubMedCrossRefGoogle Scholar
  30. Gray MA, Baldauf SL, Mayhew PJ, Hill JK (2007) The response of avian feeding guilds to tropical forest disturbance. Conserv Biol 21:133–141PubMedCrossRefGoogle Scholar
  31. Gregory RD, Gaston KJ (2000) Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos 88:515–526CrossRefGoogle Scholar
  32. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711PubMedCrossRefGoogle Scholar
  33. Hassall M, Jones DT, Taiti S, Latipi Z, Sutton SL, Mohammed M (2006) Biodiversity and abundance of terrestrial isopods along a gradient of disturbance in Sabah, East Malaysia. Eur J Soil Biol 42:S197–S207CrossRefGoogle Scholar
  34. Henle K, Davies KF, Kleyer M, Margules CR, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  35. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  36. Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, Gómez-Zurita J, Ribera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916PubMedCrossRefGoogle Scholar
  37. Jeyarajasingam A, Pearson A (1999) A field guide to the birds of West Malaysia and Singapore. Oxford University Press, OxfordGoogle Scholar
  38. Kareiva P (1987) Habitat fragmentation and the stability of predator ± prey interactions. Nature 326:388–390CrossRefGoogle Scholar
  39. Kissinger G, Herold M, De Sy V (2012) Drivers of deforestation and forest degradation: a synthesis report for REDD + policymakers. Lexeme Consulting, VancouverGoogle Scholar
  40. Lambert FR (1992) The consequences of selective logging for Bornean lowland forest birds. Philos Trans R Soc B 335:443–457CrossRefGoogle Scholar
  41. Larsen TH, Williams NM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547PubMedCrossRefGoogle Scholar
  42. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618CrossRefGoogle Scholar
  43. Laurance WF, Koh LP, Butler R, Sodhi NS, Bradshaw CJA, Neidel JD, Consunji H, Vega JM (2010) Improving the performance of the roundtable on sustainable palm oil for nature conservation. Conserv Biol 24:377–381PubMedCrossRefGoogle Scholar
  44. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  45. Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48PubMedCrossRefGoogle Scholar
  46. Lewis OT (2009) Biodiversity change and ecosystem function in tropical forests. Basic Appl Ecol 10:97–102CrossRefGoogle Scholar
  47. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  48. Lucey JM, Hill JK (2012) Spillover of insects from rain forest into adjacent oil palm plantations. Biotropica 44:368–377CrossRefGoogle Scholar
  49. Mackinnon JR, Phillipps K (1999) A field guide to the birds of Borneo, Sumatra, Java and Bali, 5th edn. Oxford University Press, OxfordGoogle Scholar
  50. Mazerolle MJ (2006) Improving data analysis in herpetology: using Akaike’s information criterion (AIC) to assess the strength of biological hypotheses. Amphib-reptil 27:169–180CrossRefGoogle Scholar
  51. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185PubMedCrossRefGoogle Scholar
  52. Mckinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516CrossRefGoogle Scholar
  53. Moran C, Catterall CP, Kanowski J (2009) Reduced dispersal of native plant species as a consequence of the reduced abundance of frugivore species in fragmented rainforest. Biol Conserv 142:541–552CrossRefGoogle Scholar
  54. Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R Soc B 365:3709–3718CrossRefGoogle Scholar
  55. Nichols E, Larsen TB, Spector S, Davis ALV, Escobar F, Favila M, Vulinec K, Network TSR (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19CrossRefGoogle Scholar
  56. Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118PubMedCrossRefGoogle Scholar
  57. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884PubMedCrossRefGoogle Scholar
  58. Peh KS-H, Lewis SL (2012) Conservation implications of recent advances in biodiversity-functioning research. Biol Conserv 151:26–31CrossRefGoogle Scholar
  59. Peh KS-H, Sodhi NS, De Jong J, Sekercioglu CH, Yap CA-M, Lim SL-H (2006) Conservation value of degraded habitats for forest birds in southern Peninsular Malaysia. Divers Distrib 12:572–581CrossRefGoogle Scholar
  60. Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411CrossRefGoogle Scholar
  61. Phillipps Q, Phillipps K (2009) Phillipp’s field guide to the birds of Borneo, 1st edn. John Beaufoy Publishing Ltd., OxfordGoogle Scholar
  62. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  63. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113CrossRefGoogle Scholar
  64. Sheldon FH, Styring A, Hosner PA (2010) Bird species richness in an exotic tree plantation: a long term perspective. Biol Conserv 143:399–407CrossRefGoogle Scholar
  65. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New HavenGoogle Scholar
  66. Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New HavenGoogle Scholar
  67. Sodhi NS, Koh LP, Clements R, Wanger TC, Hill JK, Hamer KC, Clough Y, Tscharntke T, Posa MRC, Lee TM (2010) Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol Conserv 143:2375–2384CrossRefGoogle Scholar
  68. Terborgh J (1974) Preservation of natural diversity: the problem of extinction prone species. Bioscience 24:715–722CrossRefGoogle Scholar
  69. Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926PubMedCrossRefGoogle Scholar
  70. Turner EC, Foster WA (2009) The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah. Malays J Trop Ecol 25:23–30CrossRefGoogle Scholar
  71. Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182PubMedCrossRefGoogle Scholar
  72. Velho N, Ratnam J, Srinivasan U, Sankaran M (2012) Shifts in community structure of tropical trees and avian frugivores in forest recovering from past logging. Biol Conserv 153:32–40CrossRefGoogle Scholar
  73. Walker JS (2006) Resource use and rarity among frugivorous birds in a tropical rain forest on Sulawesi. Biol Conserv 130:60–69CrossRefGoogle Scholar
  74. Wilcove DS, Koh LP (2010) Addressing the threats to biodiversity from oil palm agriculture. Biodivers Conserv 19:999–1007CrossRefGoogle Scholar
  75. Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee responses to environmental disturbances. Biol Conserv 143:2280–2291CrossRefGoogle Scholar
  76. Wong M (1986) Trophic organization of understory birds in a Malaysian Dipterocarp forest. Auk 103:100–116Google Scholar
  77. Wood BJ, Chung GF (2003) A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot 22:445–461CrossRefGoogle Scholar
  78. Woodcock P (2011) The species composition and trophic structure of ant assemblages in primary and degraded rainforest in Sabah, Borneo. Unpublished PhD dissertation, University of Leeds, UKGoogle Scholar
  79. Woodcock P, Edwards DP, Fayle TM, Newton RJ, Khen CV, Bottrell SH, Hamer KC (2011) The conservation value of South East Asia’s highly degraded forests: evidence from leaf-litter ants. Philos Trans R Soc B 366:3256–3264CrossRefGoogle Scholar
  80. Woodcock P, Edwards D, Newton R, Edwards F, Khen C, Bottrell SH, Hamer KC (2012) Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines. Naturwissenschaften 99:275–283PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Michael J. M. Senior
    • 1
  • Keith C. Hamer
    • 2
  • Simon Bottrell
    • 3
  • David P. Edwards
    • 2
    • 4
  • Tom M. Fayle
    • 5
    • 6
  • Jennifer M. Lucey
    • 1
  • Peter J. Mayhew
    • 1
  • Robert Newton
    • 2
  • Kelvin S.-H. Peh
    • 7
  • Frederick H. Sheldon
    • 8
  • Christopher Stewart
    • 9
  • Alison R. Styring
    • 10
  • Michael D. F. Thom
    • 1
  • Paul Woodcock
    • 2
  • Jane K. Hill
    • 1
  1. 1.Department of BiologyUniversity of YorkYorkUK
  2. 2.Institute of Integrative and Comparative Biology, University of LeedsLeedsUK
  3. 3.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  4. 4.School of Marine and Tropical BiologyJames Cook UniversityCairnsAustralia
  5. 5.Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  6. 6.Forest Ecology and Conservation GroupImperial College LondonAscotUK
  7. 7.Conservation Science Group, Department of ZoologyUniversity of CambridgeCambridgeUK
  8. 8.Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  9. 9.Proforest, South Suite, Frewin Chambers, Frewin CourtOxfordUK
  10. 10.The Evergreen State CollegeOlympiaUSA

Personalised recommendations