Species-level phenological responses to ‘global warming’ as evidenced by herbarium collections in the Tibetan Autonomous Region

Abstract

In recent years attention has been given to assess the impacts of warming on the plant flowering phenology. There is a growing realization that herbarium-based collections could offer a reliable and relatively time-saving baseline data source to identify these effects. This article examines the magnitude and trends of warming effects on the average flowering timing (AFT) of plants in Tibet Autonomous Region using analysis of herbarium specimens collected for 4 decades. Mixed model with randomized blocks was used to analyze a set of 41 species (total 909 specimens) which were collected during the period of 1961–2000. Results showed that an earlier AFT emerged within 40 years period in comparison to the recorded data of the year of 2000 (0.5 days per year), and that 7.5 days early flowering was contributed by mean summer (i.e., June–August) temperature. It is proposed that temporary shifts in flowering phenology responding to continuing temperature rise could quantify the extent to which climate affects plant species. Analysis of well recorded herbarium specimens could provide a reasonable indication on the impacts of rising temperature on plant phenology. The result of this study could also facilitate a bridge between the scientific knowledge and indigenous knowledge of Tibetan communities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Billings WD (1974) Adaptations and origins of alpine plants. Arc Alp Res 6:129–142

    Article  Google Scholar 

  2. Bolmgren K, Lönnberg K (2005) Herbarium data reveal an association between fleshy fruit type and earlier flowering time. Int J Plant Sci 166:663–670. doi:10.1086/430097

    Article  Google Scholar 

  3. Borchert R (1996) Phenology and flowering periodicity of Neotropical dry forest species: evidence from herbarium collections. J Trop Ecol 12:65–80. doi:10.1017/S0266467400009317

    Article  Google Scholar 

  4. Chaudhary P, Bawa KS (2011) Local perceptions of climate change validated by scientific evidence in the Himalayas. Biol Lett 7:767–770. doi:10.1098/rsbl.2011.0269

    PubMed  Article  Google Scholar 

  5. Chen H, Zhu Q, Wu N, Wang YF, Peng CH (2011) Delayed spring phenology on the Tibetan Plateau may also be attributable to other factors than winter and spring warming. Proc Natl Acad Sci USA 108:E93. doi:10.1073/pnas.1100091108

    PubMed  Article  CAS  Google Scholar 

  6. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365. doi:10.1016/j.tree.2007.04.003

    PubMed  Article  Google Scholar 

  7. Cruz RV, Harasawa H, Lal M, Wu S, Anokhin Y, Punsalmaa B, Honda Y, Jafari M, Li C, Huu Ninh N (2007) Asia. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 469–506

  8. Du J (2001) Change of temperature in Tibetan Plateau from 1961 to 2000. Acta Geogr Sin 56:682–690

    Google Scholar 

  9. Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691. doi:10.1126/science.1071617

    PubMed  Article  CAS  Google Scholar 

  10. Gaira K, Dhar U, Belwal O (2011) Potential of herbarium records to sequence phenological pattern: a case study of Aconitum heterophyllum in the Himalaya. Biodivers Conserv 20:2201–2210. doi:10.1007/s10531-011-0082-4

    Article  Google Scholar 

  11. Gallagher RV, Hughes L, Leishman MR (2009) Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Aust J Bot 57:1–9. doi:10.1071/BT08051

    Article  Google Scholar 

  12. Häkkinen R, Linkosalo T, Hari P (1995) Methods for combining phenological time series: application to bud burst in birch (Betula pendula) in central Finland for the period 1896–1955. Tree Physiol 15:721–726. doi:10.1093/treephys/15.11.721

    PubMed  Article  Google Scholar 

  13. Hudson IL, Kim SW, Keatley MR (2010) Climatic influences on the flowering phenology of four Eucalypts: a GAMLSS approach phenological research. In: Hudson IL, Keatley MR (eds) Phenological research: methods for environmental and climate change analysis. Springer, Dordrecht, pp 209–228

    Google Scholar 

  14. Johnson KG, Brooks SJ, Fenberg PB, Glover AG, James KE, Lister AM, Michel E, Spencer M, Todd JA, Valsami-Jones E, Young JR, Stewart JR (2011) Climate change and biosphere response: unlocking the collections vault. Bioscience 61:147–153. doi:10.1525/bio.2011.61.2.10

    Article  Google Scholar 

  15. Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:L18409. doi:10.1029/2005GL023252

    Article  Google Scholar 

  16. Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–1179. doi:10.1111/j.1461-0248.2004.00677.x

    Article  Google Scholar 

  17. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  18. Lavoie C, Lachance D (2006) A new herbarium-based method for reconstructing the phenology of plant species across large areas. Am J Bot 93:512–516. doi:10.3732/ajb.93.4.512

    PubMed  Article  Google Scholar 

  19. López-Pujol J, Zhang FM, Ge S (2006) Plant biodiversity in China: richly varied, endangered, and in need of conservation. Biodivers Conserv 15:3983–4026. doi:10.1007/s10531-005-3015-2

    Article  Google Scholar 

  20. Mackinson S (2001) Integrating local and scientific knowledge: an example in fisheries science. Environ Man 27:533–545. doi:10.1007/s002670010168

    CAS  Google Scholar 

  21. McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331. doi:10.1046/j.1523-1739.2001.015002320.x

    Article  Google Scholar 

  22. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Kübler AK, Bissolli P, Braslavská O, Briede A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  23. Molau U, Nordenhäll U, Eriksen B (2005) Onset of flowering and climate variability in an alpine landscape: a 10-year study from Swedish Lapland. Am J Bot 92:422–431. doi:10.3732/ajb.92.3.422

    PubMed  Article  Google Scholar 

  24. Mooney HA, Billings WD (1960) The annual carbohydrate cycle of alpine plants as related to growth. Am J Bot 47:594–598

    Article  CAS  Google Scholar 

  25. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    PubMed  Article  CAS  Google Scholar 

  26. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    PubMed  Article  CAS  Google Scholar 

  27. Primack D, Imbres C, Primack RB, Miller-Rushing AJ, Tredici PD (2004) Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. Am J Bot 91:1260–1264. doi:10.3732/ajb.91.8.1260

    PubMed  Article  Google Scholar 

  28. Robbirt KM, Davy AJ, Hutchings MJ, Roberts DL (2011) Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J Ecol 99:235–241. doi:10.1111/j.1365-2745.2010.01727.x

    Article  Google Scholar 

  29. Rochow TF (1970) Ecological investigations of Thlaspi alpestre L. Along an elevational gradient in the central Rocky Mountains. Ecology 51:649–656

    Article  Google Scholar 

  30. Salick J, Byg A (2007) Indigenous peoples and climate change. Tyndall Centre, Oxford

    Google Scholar 

  31. Shen MG (2011) Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proc Natl Acad Sci USA 108:E91–E92. doi:10.1073/pnas.1018390108

    PubMed  Article  CAS  Google Scholar 

  32. Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725. doi:10.1002/joc.821

    Article  Google Scholar 

  33. Spomer GG, Salisbury FB (1968) Eco-physiology of Geum turbinatum and implications concerning alpine environments. Bot Gaz 129:33–49

    Article  Google Scholar 

  34. Suzuki S, Kudo G (1997) Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Glob Change Biol 3:108–115. doi:10.1111/j.1365-2486.1997.gcb146.x

    Article  Google Scholar 

  35. Wyka T (1999) Carbohydrate storage and use in an alpine population of the perennial herb, Oxytropis sericea. Oecologia 120:198–208. doi:10.1007/s004420050849

    Article  Google Scholar 

  36. Yu HY, Luedeling E, Xu JC (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci USA 107:22151–22156. doi:10.1073/pnas.1012490107

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all member herbaria of Chinese Virtual Herbarium for their specimen-digitalized contributions and the herbarium (PE), Institute of Botany, Chinese Academy of Sciences (IBCAS). We also take this opportunity to thank Drs. H. Sun, Z. K. Zhou, W. Y. Chen in Kunming Institute of Botany, CAS, Drs. H. N. Qin, L. Q. Li, B. J. Bao, Q. Lin in IBCAS, and Dr. G. Pan in Tibet Agricultural and Animal Husbandry College for their great support over the years. Special thanks are due to those invaluable efforts from many field botanists to herbarium collections in TAR. Their thoughtful suggestions from the anonymous referees and editors led to great improvements of the manuscript. This study was funded by the Ministry of Science and Technology (2007FY110100) and Tibet Biodiversity Assessment project by the Ministry of Environmental Protection of China to X. F. G., the National Natural Science Foundation of China (31150110471) and Chinese Academy of Sciences (XDA05050407) to Y. W.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinfen Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Z., Wu, N., Gao, X. et al. Species-level phenological responses to ‘global warming’ as evidenced by herbarium collections in the Tibetan Autonomous Region. Biodivers Conserv 22, 141–152 (2013). https://doi.org/10.1007/s10531-012-0408-x

Download citation

Keywords

  • Climate warming
  • Flowering phenology
  • Herbarium specimens
  • Mixed model
  • Tibet autonomous region