Skip to main content

Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion

Abstract

The effects of black-locust invasion on plant forest diversity are still poorly investigated. Vascular plants are likely to be influenced by increasing nutrient availability associated with the nitrogen-fixing activity of black-locust, whereas it is not clear if, along with stand aging, black-locust formations regain forest species. The main aim of the present study was to test whether the increase of black-locust stand age promoted a plant variation in mature stands leading to assemblages similar to those of native forests. Therefore, plant richness and composition of stands dominated by native trees were compared with pure black-locust stands of different successional stages. Our study confirmed that the replacement of native forests by pure black-locust stands causes both plant richness loss and shifts in species composition. In black-locust stands plant communities are dominated by nitrophilous species and lack many of the oligothrophic and acidophilus species typical of native forests. Plant communities of native forests are more diverse with respect to pure black-locust stands, suggesting that black-locust invasion also causes a homogenization of the plant forest biota. We did not detect differences across the successional gradient of black-locust stands, and mature stands do not recover the diversity of plant species which are lost by the replacement of the native forests by black-locust. Accordingly some efforts in reducing the negative impacts of black-locust invasion on plant forest biota should be focused at least in those areas where conservation is among management priorities, such in the case of habitats included in the Habitat Directive (92/43 ECE).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Akobundu IO, Agyakwa CW (1987) A handbook of West African weeds. International Institute of Tropical Agriculture, Ibadan

    Google Scholar 

  • Allan JD (1975) Components of diversity. Oecologia 18:359–367

    Article  Google Scholar 

  • Auten JT (1945) Relative influence of sassafras, black-locust, and pines upon old-field soils. J Forest 43:441–446

    Google Scholar 

  • Behera DB, Kushwaha SPS (2012) The charms and challenges of climate change and biodiversity in a warming world. Biodivers Conserv 21:1153–1158

    Article  Google Scholar 

  • Boring LR, Swank WT (1984) The role of black-locust (Robinia pseudoacacia) in forest succession. J Ecol 72:749–766

    Article  Google Scholar 

  • Braun-Blanquet J (1932) Plant sociology. McGraw-Hill, New York and London

    Google Scholar 

  • Celesti-Grapow L, Pretto F, Brundu G, Carli E, Blasi C (2009). A thematic contribution to the National Biodiversity Strategy. Plant invasion in Italy, an overview. Ministry for the Environment Land and Sea Protection, Nature Protection Directorate, Roma

  • Chapman AG (1935) The effects of black-locust on associated species with special reference to forest trees. Ecol Monogr 5:37–60

    Article  CAS  Google Scholar 

  • Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi Editori, Roma

    Google Scholar 

  • Conti F, Alessandrini A, Bacchetta G, Banfi E, Barberis G, Bartolucci F, Bernardo L, Bonacquisti S, Bouvet D, Bovio M, Brusa G, Del Guacchio E, Foggi B, Frattini S, Galasso G, Gallo L, Gangale C, Gottschlich G, Grünanger P, Gubellini L, Iiriti G, Lucarini D, Marchetti D, Moraldo B, Peruzzi L, Poldini L, Prosser F, Raffaelli M, Santangelo A, Scassellati E, Scortegagna S, Selvi F, Soldano A, Tinti D, Ubaldi D, Uzunov D, Vidali M (2007) Integrazioni alla checklist della flora vascolare italiana. Nat Vicentina 10:5–74

    Google Scholar 

  • Daehler CC, Strong DR (1994) Native plant biodiversity vs. the introduced invaders: status of the conflict and future management options. In: Majumdar SK, Brenner FJ, Lovich JE, Schalles JF, Miller EW (eds) Biological diversity: problems and challenges. Pennsylvania Academy of Science, Easton, pp 92–113

    Google Scholar 

  • Davis MA (2003) Biotic globalization: does competition from introduced species threaten biodiversity? Bioscience 53:481–489

    Article  Google Scholar 

  • Dzwonko Z, Loster S (1997) Effects of dominant trees and anthropogenic disturbances on species richness and floristic composition of secondary communities in Southern Poland. J Appl Ecol 34:861–870

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  • Everitt JH, Lonard RI, Little CR (2007) Weeds in South Texas and Northern Mexico. Texas Tech University Press, Lubbock

    Google Scholar 

  • Friederich JM, Dawson JO (1984) Soil nitrogen concentration and Juglans nigra growth in mixed plots with nitrogen-fixing Alnus, Elaeagnus, Lespedeza, and Robinia species. Can J Forest Res 14:864–868

    Article  Google Scholar 

  • Gaertner M, Den Breeyen A, Hui C, Richardson DM (2009) Impacts of alien plant invasions on species richness in mediterranean-type ecosystems: a meta-analysis. Prog Phys Geog 33:319–338

    Article  Google Scholar 

  • Galka A, Zarzynski J, Kopeć M (2005) Effect of different fertilization regimes on species composition and habitat in long-term grassland experiment. Grassland Sci Eur 10:132–135

    Google Scholar 

  • Halupa L, Rédei K (1992) Establishment for forests primarily for energetic purpose. In: Proceedings of the Hungarian Forest Research Institute (Erdészeti Kutatások), Budapest, vol 82–83, pp 304–312

  • Hejda M, Pyšek P (2006) What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation? Biol Conserv 132:143–152

    Article  Google Scholar 

  • Hicks WK, Whitfield CP, Bealey WJ, Sutton MA (2011) Nitrogen deposition and Natura 2000: science & practice in determining environmental impacts. Workshop Proceedings, COST. http://cost729.ceh.ac.uk/n2kworkshop. Accessed 10 June 2012

  • Holm LG, Plucknett DL, Pancho JV, Herberger TP (1977) The world’s worst weeds. Distribution and biology. University Press, Honolulu

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds. Natural histories and distribution. Wiley, New York

    Google Scholar 

  • Honsová D, Hejcman M, Klaudisová M, Pavlu V, Kocourková D, Hakl J (2007) Species composition of an alluvial meadow after 40 years of applying nitrogen, phosphorus and potassium fertilizer. Preslia 79:245–258

    Google Scholar 

  • Hruska K (1991) Human impact on the forest vegetation in the western part of the Pannonic Plain (Yugoslavia). Vegetatio 92:161–166

    Google Scholar 

  • Kirkham FW, Tallowin JRB, Sanderson RA, Bhogal A, Chambers BJ, Stevens DP (2008) The impact of organic and inorganic fertilizers and lime on the species-richness and plant functional characteristics of hay meadow communities. Biol Cons 141:1411–1427

    Article  Google Scholar 

  • Kleinbauer I, Dullinger S, Peterseil J, Essl F (2010) Climate change must drive the invasive tree Robinia pseudoacacia into nature reserve and endangered habitats. Biol Cons 143(2):382–390

    Article  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Le Maitre DC, Gaertner M, Marchante E, Ens EJ, Holmes PM, Pauchard A, O’Farrell PJ, Rogers AM, Blanchard R, Blignaut J, Richardson DM (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17:1015–1029

    Article  Google Scholar 

  • Marchante E, Kjøller A, Struwe S, Freitas H (2008) Invasive Acacia longifolia induce changes in the microbial catabolic diversity of sand dunes. Soil Biol Biochem 40:2563–2568

    Article  CAS  Google Scholar 

  • Martin LJ, Blossey B (2012) Invasive plants cover impacts the desirability of lands for conservation acquisition. Biodivers Conserv 21:1987–1996

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden Beach

    Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data, version 4.25. MjM Software, Gleneden Beach

  • McKendry P (2001) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    PubMed  Article  Google Scholar 

  • Motta R, Nola P, Berretti R (2009) The rise and fall of the black-locust (Robinia pseudoacacia L.) in the “Siro Negri” Forest Reserve (Lombardy, Italy): lessons learned and future uncertainties. Ann Forest Sci 66: 410

    Google Scholar 

  • Nascimbene J, Marini L (2010) Oak forest exploitation and black-locust invasion caused severe shifts in epiphytic lichen communities in Northern Italy. Sci Total Environ 408:5506–5512

    PubMed  Article  CAS  Google Scholar 

  • Nascimbene J, Nimis PL, Benesperi R (2012) Mature non-native black-locust (Robinia pseudoacacia L.) forest does not regain the lichen diversity of the natural forest. Sci Total Environ 421–422:197–202

    PubMed  Article  Google Scholar 

  • Osada T (1997) Colored illustrations of naturalized plants of Japan. Hoikusha Publishing Co., Osaka

    Google Scholar 

  • Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413

    Article  Google Scholar 

  • Peloquin RL, Hiebert RD (1999) The effects of black-locust (Robinia pseudoacacia) on species diversity and composition of black oak savanna/woodland communities. Nat Areas J 19:121–131

    Google Scholar 

  • Pignatti S, Menegoni P, Pietrosanti S (2005) Bioindicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia 39:1–97

    Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Pividori M, Grieco C (2003) Evoluzione strutturale di popolamenti cedui di robinia (Robinia pseudoacacia L.) nel Canavese (Torino–Italia). Schweiz Z Forstwes 154:1–7

    Article  Google Scholar 

  • Raju RA (1998) Prevalent weed flora in Peninsular India. Allied Publishers, New Delhi

    Google Scholar 

  • Rédei K (2003) Black-locust (Robinia pseudoacacia L.) growing in Hungary, 3rd edn. Hungarian Forest Research Institute, Budapest

  • Reichard SH, Hamilton CW (1997) Predicting invasions of woody plants into North America. Conserv Biol 11:193–203

    Article  Google Scholar 

  • Rice SK, Westerman B, Federici R (2004) Impacts of the exotic, nitrogen-fixing black-locust (Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem. Plant Ecol 174:97–107

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Rooney TP, Wiegmann SM, Rogers DA, Waller DM (2004) Biotic impoverishment and homogenization in unfragmented forest understory. Conserv Biol 18:787–798

    Article  Google Scholar 

  • Roschewitz I, Gabriel D, Tscharntke T et al (2005) The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J Appl Ecol 42:873–882

    Article  Google Scholar 

  • Sabo AE (2000) Robinia pseudoacacia invasions and control in North America and Europe. Rest Recl Rev 6: 244–251. http://horticulture.cfans.umn.edu/vd/h5015/00papers/sabo.htmpp. Accessed 20 May 2012

  • Sax DF, Gaines SD, Brown JH (2002) Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. Am Nat 160:766–783

    PubMed  Article  Google Scholar 

  • Tani A, Maltoni A, Mariotti B (2012) La gestione della robinia in Toscana. Centro stampa Giunta RegioneToscana, Firenze

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804

    PubMed  Article  CAS  Google Scholar 

  • Von Holle B, Joseph KA, Largay EF, Lohnes RG (2006) Facilitations between the introduced nitrogen-fixing tree, Robinia pseudoacacia, and nonnative plant species in the glacial outwash upland ecosystem of Cape Cod, MA. Biodivers Conserv 15:2197–2215

    Article  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Assessing the relative importance of habitat destruction, alien species, pollution, over-exploitation, and disease. Bioscience 48:607–616

    Article  Google Scholar 

  • Yelenik SG, Stock WD, Richardson DM (2007) Functional group identity does not predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem function. Biol Invasions 9:117–125

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly conducted within the project QuiT (Inquinamento biologico in Toscana ed elaborazione di scenari futuri in relazione al cambiamento climatico) POR-FSE 2007–2013, Resp. Francesca Gherardi. Finally, we thank the Province of Pistoia for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Giuliani.

Appendix 1

Appendix 1

Species are listed in alphabetical order. Species frequency is expressed as the percentage of plots for each stand type in which the species occurred

Species Frequency (%)
BL_Y BL_A BL_M Native
Abies alba 0 0 0 14
Acer campestre 0 14 14 57
Acer pseudoplatanus a 14 14 14 29
Agrostis capillaris bc 14 29 0 0
Agrostis stolonifera 0 0 14 0
Aira caryophyllea, subsp. caryophyllea 0 0 0 14
Ajuga reptans 0 0 0 29
Alliaria petiolata a 29 14 14 29
Anemonoides nemorosa 0 0 0 43
Anthoxanthum odoratum, subsp. odoratum 0 0 0 14
Arabis sagittata b 0 14 0 0
Arum italicum, subsp. italicum 0 0 29 0
Asplenium adiantum-nigrum, subsp. adiantum-nigrum bc 0 14 29 0
Brachypodium rupestre 29 29 0 29
Brachypodium sylvaticum, subsp. sylvaticum 0 14 0 0
Briza maxima b 0 14 0 0
Bromus diandrus, subsp. maximus 0 14 0 0
Bromus sterilis 71 29 0 0
Calluna vulgaris 0 0 0 14
Campanula rapunculus 14 0 0 0
Campanula trachelium, subsp. trachelium 0 0 0 14
Cardamine bulbifera 0 0 0 14
Cardamine chelidonia 0 14 0 0
Cardamine hirsuta 0 0 29 0
Cardamine impatiens, subsp. impatiens a 0 0 0 14
Carex sylvatica, subsp. sylvatica 0 0 0 14
Castanea sativa 14 29 71 86
Cephalanthera damasonium 0 0 0 14
Chaerophyllum aureum a 0 29 14 14
Chaerophyllum hirsutum a 43 0 14 0
Clematis vitalba a 43 43 14 0
Convolvulus althaeoides b 0 0 14 0
Convolvulus arvensis 14 14 0 0
Cornus mas 14 0 0 14
Cornus sanguinea 0 14 0 14
Corylus avellana a 14 0 14 0
Crataegus monogyna b 71 29 43 29
Crepis leontodontoides ca 0 14 0 0
Crocus vernus 0 0 0 29
Cruciata glabra 0 0 0 29
Cytisus scoparius, subsp. scoparius bc 0 0 0 57
Cytisus villosus 0 0 0 14
Dactylis glomerata. 0 14 0 0
Daphne laureola b 0 0 0 29
Deschampsia flexuosa 0 0 0 14
Digitalis lutea, subsp. australis 0 0 0 57
Dryopteris filix 0 0 0 14
Epipactis atrorubens 0 0 0 14
Epipactis helleborine 0 0 0 14
Erica arborea bc 0 0 0 14
Erigeron sumatrensis a 0 14 0 0
Euonymus europaeus 14 0 0 0
Euphorbia amygdaloides, subsp. amygdaloides 0 0 0 14
Euphorbia dulcis 0 0 0 57
Fallopia dumetorum 0 14 0 0
Festuca heterophylla 29 29 0 57
Fragaria vesca, subsp. vesca 0 14 0 0
Fraxinus ornus, subsp. ornus b 43 29 57 43
Galium aparine 14 57 14 14
Genista germanica 0 0 0 14
Genista pilosa 0 0 0 14
Genista tinctoria 0 0 0 14
Geranium lucidum 29 14 0 0
Geranium nodosum 0 0 0 14
Geranium purpureum b 14 29 14 14
Geranium robertianum 0 14 0 14
Geranium rotundifolium b 14 0 0 0
Geum urbanum a 0 0 14 0
Hedera helix 71 57 100 29
Helleborus bocconei, subsp. bocconei 14 0 0 0
Hieracium murorum 0 0 0 43
Holcus lanatus 29 0 0 0
Holcus mollis bc 0 0 0 14
Ilex aquifolium 0 0 14 14
Juniperus communis 0 0 0 14
Lactuca muralis 14 0 43 14
Lamium album, subsp. album 14 0 0 14
Lamium maculatum 0 0 0 14
Lamium purpureum 0 29 14 0
Lathyrus linifolius 0 0 0 14
Laurus nobilis 29 0 57 0
Lonicera caprifolium 14 0 14 0
Lotus corniculatus 0 0 0 14
Lunaria annua 29 43 29 0
Luzula forsteri 0 0 0 57
Luzula multiflora b 0 14 0 0
Luzula pedemontana 0 14 0 43
Medicago orbicularis 0 14 0 0
Melica uniflora 0 0 14 0
Melittis melissophyllum, subsp. melissophyllum b 14 0 0 0
Moehringia trinervia a 0 0 0 14
Molinia caerulea, subsp. arundinacea 0 0 0 14
Muscari comosum 0 29 0 0
Ornithogalum umbellatum 0 14 0 0
Ostrya carpinifolia 0 0 29 29
Physospermum cornubiense 0 0 0 14
Phyteuma scorzonerifolium 0 0 0 29
Pinus pinaster, subsp. pinaster 0 0 0 14
Poa nemoralis, subsp. nemoralis b 0 0 0 14
Poa sylvicola 14 29 14 14
Poa trivialis a 0 0 43 29
Polypodium interjectum c 29 14 14 0
Polystichum aculeatum a 0 29 14 0
Polystichum setiferum 43 29 43 0
Potentilla micrantha 14 0 0 14
Primula vulgaris, subsp. vulgaris 0 0 0 14
Prunus avium, subsp. avium 0 0 0 43
Prunus spinosa, subsp. spinosa 0 0 0 14
Pteridium aquilinum, subsp. aquilinum bc 0 0 0 71
Quercus cerris 0 29 14 71
Quercus ilex 14 0 0 0
Quercus pubescens, subsp. pubescens 57 14 0 0
Ranunculus lanuginosus a 0 14 29 0
Robinia pseudoacacia a 100 100 100 14
Rorippa sylvestris, subsp. sylvestris 0 0 0 14
Rosa canina 0 0 0 14
Rubia peregrina 29 29 29 0
Rubia peregrina, subsp. peregrina b 0 0 0 14
Rubus caesius a 0 14 0 0
Rubus hirtus a 29 0 57 57
Rubus ulmifolius a 43 100 57 0
Rumex crispus 0 0 0 14
Rumex sanguineus a 14 14 0 0
Ruscus aculeatus 14 14 14 14
Sambucus nigra a 57 43 86 0
Sanicula europaea 0 0 0 29
Senecio ovatus a 0 14 0 0
Serratula tinctoria, subsp. tinctoria 0 0 0 14
Silene italica, subsp. italica 0 14 0 14
Solidago virgaurea. 0 0 0 43
Stachys officinali b 0 0 0 14
Stellaria media, subsp. media 14 71 57 29
Stellaria nemorum, subsp. montana a 0 14 0 0
Tamus communis 71 57 57 14
Teucrium scorodonia bc 0 0 0 14
Torilis japonica a 14 14 29 0
Trifolium repens 0 0 0 14
Ulmus minor, subsp. minor 0 0 0 14
Urtica dioica, subsp. dioica a 14 29 0 0
Vaccinium myrtillus c 0 0 0 43
Verbascum pulverulentum a 0 14 0 0
Viburnum tinus, subsp. tinus b 0 0 0 14
Viola alba, subsp. dehnhardtii 14 29 43 0
Viola reichenbachiana 14 0 14 14
  1. Nomenclature follows Conti et al. (2005, 2007)
  2. BL_Y = young black-locust stands; BL_A = adult black-locust stands; BL_M = mature black-locust stands; Native = stands composed by native tree species
  3. aMarks nitrophilous species (Ellenberg indicator value for eutrophication ≥6)
  4. bOligotrophic species (Ellenberg indicator value for eutrophication ≤3)
  5. cAcidophilous species (Ellemberg indicator value for substrate acidity ≤3)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benesperi, R., Giuliani, C., Zanetti, S. et al. Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodivers Conserv 21, 3555–3568 (2012). https://doi.org/10.1007/s10531-012-0380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0380-5

Keywords

  • Invasive alien species
  • Stand age
  • Native deciduous forests
  • Northern Apennines
  • Robinia pseudoacacia