Skip to main content

Advertisement

Log in

Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Measures of geodiversity may provide a potentially useful surrogate for biodiversity patterns in insufficiently surveyed areas. However, their reliability in modelling the spatial variation in species richness is inadequately understood. We investigated whether the explanatory and predictive power of species richness models can be improved by considering explicit measures of geodiversity (variability of earth surface materials, forms and processes) in addition to climate and topography variables. Vascular plant species richness was modelled in two study areas in Northern Europe, Finland at the resolution of 500 or 1000 m, and as a function of three geodiversity (geological, geomorphological and hydrological diversity) variables, and six climate and topography variables. Variation partitioning was used to identify the independent and shared contributions of the geodiversity, climate and topography variable groups in explaining the spatial patterns of species richness. Generalized additive models were used to explore the ability of the different explanatory variables in predicting plant species richness within and between the study areas. In both the study areas, the inclusion of measures of geodiversity improved the explanatory power, predictive ability and robustness of the plant species richness models. In conclusion, the explicit measures of geodiversity appear to be promising surrogates of biodiversity, which reflect important abiotic resource factors, and may thus provide an equally, or even more reliable basis for transferring biodiversity models to new areas than models based on climate and topography variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.  3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fennici 5:169–211

    Google Scholar 

  • Akaike H (1974) A new look at the statistical identification model. IEEE Trans Autom Contr 19:716–723

    Article  Google Scholar 

  • Anderson MG, Ferree CE (2010) Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLoS ONE 5:e11554

    Article  PubMed  Google Scholar 

  • Araújo MB, Densham PJ, Williams PH (2004) Representing species in reserves from patterns of assemblage diversity. J Biogeogr 31:1037–1050

    Article  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  PubMed  CAS  Google Scholar 

  • Barthlott W, Hostert A, Kier G, Koper W, Kreft H, Mutke J, Rafiqpoor MD, Sommer JH (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61:305–315

    Article  Google Scholar 

  • Beier P, Brost B (2010) Use of land facets to plan for climate change: conserving the arenas, not the actors. Conserv Biol 24:701–710

    Article  PubMed  Google Scholar 

  • Benito-Calvo A, Pérez-González A, Magri O, Meza P (2009) Assessing regional geodiversity: the Iberian Peninsula. Earth Surf Proc Land 34:1433–1445

    Article  Google Scholar 

  • Benton MJ (2009) The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728–732

    Article  PubMed  CAS  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrolog Sci Bull 24:43–69

    Article  Google Scholar 

  • Bini LM, Diniz-Filho JAF, Rangel TFLV, Akre TSB, Albaladejo RG, Albuquerque FS, Aparicio A, Araújo MB, Baselga A, Beck J, Bellocq MI, Böhning-Gaese K, Borges PAV, Castro-Parga I, Chey VK, Chown SL, De Marco P, Dobkin DS, Ferrer-Castán D, Field R, Filloy J, Fleishman E, Gómez JF, Hortal J, Iverson JB, Kerr JT, Kissling WD, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Morales-Castilla I, Moreno JC, Oberdorff T, Olalla-Tárraga MÁ, Pausas JG, Qian H, Rahbek C, Rodríguez MÁ, Rueda M, Ruggiero A, Sackmann P, Sanders NJ, Terribile LC, Vetaas OR, Hawkins BA (2009) Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32:193–204

    Article  Google Scholar 

  • Birks HJB (1996) Statistical approaches to interpreting diversity patterns in the Norwegian mountain flora. Ecography 19:332–340

    Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  PubMed  CAS  Google Scholar 

  • Burnett M, August P, Brown J, Killingbeck K (1998) The influence of geomorphological heterogeneity on biodiversity. I. A patch-scale perspective. Conserv Biol 12:363–370

    Google Scholar 

  • Crawley MJ (1986) The population biology of invaders. Phil Trans R Soc B 314:711–731

    Article  Google Scholar 

  • Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of trees. Nature 329:326–327

    Article  Google Scholar 

  • Davidar P, Rajagopal B, Mohandass D, Puravaud J, Ccondit R, Wright SJ, Leigh EG Jr (2007) The effect of climatic gradients, topographic variation and species traits on the beta diversity of rain forest trees. Global Ecol Biogeogr 16:510–518

    Article  Google Scholar 

  • Demek J (1972) ed) Manual of detailed geomorphological mapping. Academia, Praque

    Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel AH, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr F, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Drebs A, Nordlund A, Karlsson P, Helminen J, Rissanen P (2002) Climatological statistics of Finland 1971–2000. Clim Stat Finland 2002 1

  • Ferrer-Castán D, Vetaas OR (2005) Pteridophyte richness, climate and topography in the Iberian Peninsula: comparing spatial and nonspatial models of richness patterns. Global Ecol Biogeogr 14:155–165

    Article  Google Scholar 

  • Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? System Biol 51:331–363

    Article  Google Scholar 

  • Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Turner JRG (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Fogelberg P, Seppälä M (1986) Geomophology. In: Alalammi P (ed) Geomophology, Atlas of Finland, Folio 122. National Board of Survey & Geographical Society of Finland, Helsinki, pp 1–19

    Google Scholar 

  • Geiger R (1965) The Climate Near the Ground. Harvard University Press, Cambridge

    Google Scholar 

  • Gordon JE, Barron HF, Hansom JD, Thomas MF (2012) Engaging with geodiversity – why it matters. Proc Geol Assoc 123:1–6

    Article  Google Scholar 

  • Gosselink JG, Turner RE (1978) The role of hydrology in freshwater wetland ecosystems. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic, New York, pp 63–78

    Google Scholar 

  • Grantham HS, Pressey RL, Wells JA, Beattie AJ (2010) Effectiveness of biodiversity surrogates for conservation planning: different measures of effectiveness generate a kaleidoscope of variation. PLoS ONE 5:e11430

    Article  PubMed  Google Scholar 

  • Gray M (2004) Geodiversity valuing and conserving abiotic nature. Wiley, Chichester

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Guisan A, Graham CH, Elith J, Huettmann F, the NCEAS Species Distribution Modelling Group (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340

    Google Scholar 

  • Hanski I (2005) The shrinking world: ecological consequences of habitat loss. International Ecology Institute, Oldendorf

    Google Scholar 

  • Harner RF, Harper KT (1976) The role of area, heterogeneity, and favorability in plant species diversity of pinyon-juniper ecosystems. Ecology 57:1254–1263

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  • Hawkins BA, Porter EE, Diniz-Filho JAF (2003) Productivity and history as predictors of the latitudinal diversity gradient for terrestrial birds. Ecology 84:1608–1623

    Article  Google Scholar 

  • Hayden BP (1998) Ecosystem feedbacks on climate at the landscape scale. Phil Trans R Soc B 353:5–18

    Article  Google Scholar 

  • Heikkinen RK, Kalliola RJ (1990) The vascular plants of the Kevo nature reserve (Finland); an ecological-environmental analysis. Kevo Notes 9:1–56

    Google Scholar 

  • Heikkinen RK, Neuvonen S (1997) Species richness of vascular plants in the subarctic landscape of northern Finland: modelling relationships to the environment. Biodivers Conserv 6:1181–1201

    Article  Google Scholar 

  • Heikkinen RK, Birks HJB, Kalliola RJ (1998) A numerical analysis of the mesoscale distribution patterns of vascular plants in the subarctic Kevo nature reserve, northern Finland. J Biogeogr 25:123–146

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Virkkala R, Rainio K (2004) Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. J Appl Ecol 41:824–835

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Leikola N, Pöyry J, Settele J, Kudrna O, Marmion M, Fronzek S, Thuiller W (2010) Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodivers Conserv 19:695–723

    Article  Google Scholar 

  • Hjort J, Luoto M (2009) Interaction of geomorphic and ecologic features across altitudinal zones in a subarctic landscape. Geomorphology 112:324–333

    Article  Google Scholar 

  • Hjort J, Luoto M (2010) Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 115:109–116

    Article  Google Scholar 

  • Hunter ML Jr, Jacobson GL Jr, Webb T III (1988) Paleoecology and the coarse-filter approach to maintaining biological diversity. Conserv Biol 4:375–385

    Article  Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Illán JG, Gutiérrez D, Wilson RJ (2010) Fine-scale determinants of butterfly species richness and composition in a mountain region. J Biogeogr 37:1706–1720

    Article  Google Scholar 

  • Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385:252–254

    Article  CAS  Google Scholar 

  • Kocher SD, Williams ED (2000) The diversity and abundance of North American butterflies vary with habitat disturbance and geography. J Biogeogr 27:785–794

    Article  Google Scholar 

  • Lavers CP, Field R (2006) A resource-based conceptual model of plant diversity that reassesses causality in the productivity–diversity relationship. Global Ecol Biogeogr 15:213–224

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lobo JM, Castro I, Moreno JC (2001) Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biol J Linn Soc 73:233–253

    Article  Google Scholar 

  • Luoto M, Heikkinen RK (2008) Disregarding topographic heterogeneity biases species turnover assessments based on bioclimatic models. Glob Change Biol 14:483–494

    Article  Google Scholar 

  • Luoto M, Virkkala R, Heikkinen RK, Rainio K (2004) Predicting bird species richness using remote sensing in boreal agricultural–forest mosaics. Ecol Appl 14:1946–1962

    Article  Google Scholar 

  • Luoto M, Virkkala R, Heikkinen RK (2007) The role of land cover in bioclimatic models depends on spatial resolution. Global Ecol Biogeogr 16:34–42

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606

    Article  Google Scholar 

  • McGarigal K, Marks BJ (1994) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Version 2.0. Forest Science Department, Oregon State University, Corvallis

  • Menge BA, Sutherland JP (1976) Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity. Am Nat 101:351–369

    Article  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396

    Article  Google Scholar 

  • Moser D, Dullinger S, Englisch T, Niklfeld H, Plutzar C, Sauberer N, Zechmeister HG, Grabherr G (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. J Biogeogr 32:1117–1127

    Article  Google Scholar 

  • Mutke J, Barthlott W (2005) Patterns of vascular plant diversity at continental to global scales. Biol Skrift 55:521–537

    Google Scholar 

  • Nichols WF, Killingbeck KT, August PV (1998) The influence of geomorphological heterogeneity on biodiversity II. A landscape perspective. Conserv Biol 12:371–379

    Article  Google Scholar 

  • NLS (2009) Digital elevation model. National land survey of Finland, Helsinki

    Google Scholar 

  • Oksanen L, Virtanen R (1995) Topographic, altitudinal and regional patterns in continental and suboceanic heath vegetation in northern Fennoscandia. Acta Bot Fennica 153:1–80

    Google Scholar 

  • Owen JG (1989) Patterns of herpetofaunal species richness: relation to temperature, precipitation and variance in elevation. J Biogeogr 16:141–150

    Article  Google Scholar 

  • Parks KE, Mulligan M (2010) On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers Conserv 19:2751–2766

    Article  Google Scholar 

  • Parviainen M, Luoto M, Heikkinen RK (2009a) The role of local and landscape level productivity in modelling of boreal plant species richness. Ecol Model 220:2690–2701

    Article  Google Scholar 

  • Parviainen M, Marmion M, Luoto M, Thuiller W, Heikkinen RK (2009b) Using summed individual species models and state-of-the-art modelling techniques to identify threatened plant species hotspots. Biol Conserv 142:2501–2509

    Article  Google Scholar 

  • Pausas JG, Carreras J, Ferre A, Font X (2003) Coarse-scale plant species richness in relation to environmental heterogeneity. J Veg Sci 14:661–668

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Randin CF, Vuissoz G, Liston GE, Vittoz P, Guisan A (2009) Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the Western Swiss Alps. Arctic Antarctic Alpine Res 41:347–361

    Article  Google Scholar 

  • Richerson PJ, Lum K (1980) Patterns of plant species and diversity in California: relation to weather and topography. Am Nat 116:504–536

    Article  Google Scholar 

  • Ruban DA (2010) Quantification of geodiversity and its loss. Proc Geol Assoc 121:326–333

    Article  Google Scholar 

  • Sala OE, Chapin SF III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Pressey RL, Faith DP, Margules CR, Fuller T, Stoms DM, Moffett A, Wilson KA, Williams KJ, Williams PH, Andelman S (2006) Biodiversity conservation planning tools: present status and challenges for the future. Ann Rev Env Res 31:123–159

    Article  Google Scholar 

  • Serrano E, Ruiz-Flaño P (2007) Geodiversity: a theoretical and applied concept. Geogr Helv 62:140–147

    Google Scholar 

  • Skov F, Svenning J-C (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biology research, 3rd edn. WH Freeman, New York

  • Söyrinki N, Saari V (1980) Die Flora im Nationalpark Oulanka, Nord-Finnland. Acta Florestica Fennica 114:1–150

    Google Scholar 

  • Swanson FJ, Kratz TK, Caine N, Woodmansee RG (1988) Landform effects on ecosystems pattern and processes. Bioscience 38:92–98

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  • Titeux N, Maes D, Marmion M, Luoto M, Heikkinen RK (2009) Inclusion of soil data improves the performance of bioclimatic envelope models for insects species distributions in temperate Europe. J Biogeogr 36:1459–1473

    Article  Google Scholar 

  • Vajda A, Venäläinen A (2003) The influence of natural conditions on the spatial variation of climate in Lapland, Northern Finland. Int J Clim 23:1011–1022

    Article  Google Scholar 

  • Vanreusel W, Maes D, Van Dyck H (2007) Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies. Conserv Biol 21:201–212

    Article  PubMed  Google Scholar 

  • Vasari Y, Tonkov S, Vasari A, Nikolova A (1996) The late-quaternary history of the vegetation and flora in northeastern Finland in the light of a re-investigation of Aapalampi in Salla. Aquilo Ser Bot 36:27–41

    Google Scholar 

  • Venäläinen A, Heikinheimo M (2002) Meteorological data for agricultural applications. Phys Chem Earth 27:1045–1050

    Article  Google Scholar 

  • Virtanen R, Luoto M, Rämä T, Mikkola K, Hjort J, Grytnes JA, Birks HJB (2010) Recent vegetation changes in the high-latitude tree-line ecotone are controlled by geomorphological disturbance, productivity and diversity. Global Ecol Biogeogr 19:810–821

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  • Whittaker RJ, Araújo MB, Paul J, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Willis KJ, Whittaker RJ (2002) Species diversity: scale matters. Science 295:1245–1248

    Article  PubMed  CAS  Google Scholar 

  • Wright DH, Currie DJ, Maurer BA (1993) Energy supply and patterns of species richness on local and regional scales. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 66–74

    Google Scholar 

  • Zimmermann NE, Edwards TC, Moisen GG, Frescino TS, Blackard JA (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Paul Beier and two anonymous reviewers for their helpful and constructive comments. Moreover, we would like to acknowledge Lauren Martin for her help in checking the English of the revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hjort.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 67 kb)

Supplementary material 2 (DOC 547 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hjort, J., Heikkinen, R.K. & Luoto, M. Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodivers Conserv 21, 3487–3506 (2012). https://doi.org/10.1007/s10531-012-0376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0376-1

Keywords

Navigation