Skip to main content

Advertisement

Log in

Diversity and composition of arboreal beetle assemblages in tropical pasture afforestations: effects of planting schemes and tree species identity

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Timber tree plantations are considered for rehabilitating forest biodiversity in the tropics, but knowledge on determinants of faunal diversity patterns in such human-modified forest landscapes is scarce. We quantified the composition of beetle assemblages on three native timber species (Anacardium excelsum, Cedrela odorata and Tabebuia rosea) planted on former pasture to assess effects of tree species identity, tree species diversity, and insecticide treatment on a speciose group of animals in tropical plantations. The beetle assemblage parameters ‘abundance’, ‘species richness’, ‘Chao1 estimated species richness’ and ‘Shannon diversity’ were significantly reduced by insecticide treatment for each tree species. Shannon diversity increased with stand diversification for T. rosea but not for A. excelsum and C. odorata. Species similarity was highest (lowest species turnover) between beetle assemblages on T. rosea, and it was lowest (highest species turnover) for assemblages on insecticide-treated trees of all timber species. Considering trophic guilds, herbivorous beetles dominated on all tree species and in all planting schemes. Herbivores were significantly more dominant on T. rosea and C. odorata than on A. excelsum, suggesting that tree species identity affects beetle guild structure on plantation trees. Insecticide-treated stands harbored less herbivores than untreated stands, but exhibited a high abundance of predator beetle species. Our study revealed that even young pasture-afforestations can host diverse beetle assemblages and thus contribute to biodiversity conservation in the tropics. The magnitude of this contribution, however, may strongly depend on management measures and on the selected tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adis J, Lurina YD, Montgomery NDGG (1984) Arthropods from the canopy of inundated and terra firme forests near Manaus, Brazil, with critical considerations on the pyrethrum-fogging technique. Stud Neotrop Fauna Environ 4:223–236

    Article  Google Scholar 

  • Barbosa P, Segarra A, Gross P (2000) Structure of two macrolepidopteran assemblages on Salix nigra (Marsh) and Acer negundo L.: abundance, diversity, richness, and persistence of scarce species. Ecol Entomol 25:374–379

    Article  Google Scholar 

  • Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20

    Article  Google Scholar 

  • Barone JA (2000) Comparison of herbivores and herbivory in the canopy and understory for two tropical tree species. Biotropica 32:307–317

    Google Scholar 

  • Bascompte J (2009) Disentangling the web of life. Science 325:416–419

    Article  CAS  PubMed  Google Scholar 

  • Basset Y (1999) Diversity and abundance of insect herbivores foraging on seedlings in a rainforest in Guyana. Ecol Entomol 24:245–259

    Article  Google Scholar 

  • Basset Y, Aberlenc HP, Barrios H, Curletti G, Berenger JM, Vesco JP, Causse P, Haug A, Hennion AS, Lesobre L, Marques F, O’Meara R (2001) Stratification and diel activity of arthropods in a lowland rainforest in Gabon. Biol J Linn Soc 72:585–607

    Article  Google Scholar 

  • Basset Y, Novotny V, Miller SE, Kitching RL (2003) Arthropods of tropical forests. Cambridge University Press, Cambridge

    Google Scholar 

  • Basset Y, Mavoungou JF, Mikissa JB, Missa O, Miller SE, Kitching RL, Alonso A (2004) Discriminatory power of different arthropod data sets for the biological monitoring of anthropogenic disturbance in tropical forests. Biodivers Conserv 13:709–732

    Article  Google Scholar 

  • Basset Y, Missa O, Alonso A, Miller SE, Curletti G, De Meyer M, Eardley CL, Lewis OT, Mansell MW, Novotny V, Wagner T (2008) Choice of metrics for studying arthropod responses to habitat disturbance: one example from Gabon. Insect Conserv Divers 1:55–66

    Article  Google Scholar 

  • Bremer LL, Farley KA (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19:3893–3915

    Article  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951

    Article  Google Scholar 

  • Catterall CP, Kanowski J, Wardell-Johnson GW (2007) Biodiversity and new forests: interacting processes, prospects and pitfalls of rainforest restoration. In: Stork NE, Turton SM (eds) Living in a dynamic tropical forest landscape. Blackwell, Malden, pp 510–525

    Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Chey VK, Holloway JD, Hambler C, Speight MR (1998) Canopy knockdown of arthropods in exotic plantations and natural forest in Sabah, north-east Borneo, using insecticidal mist-blowing. Bull Entomol Res 88:15–24

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Ann Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Coley PD, Massa M, Lovelock CE, Winter K (2002) Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133:62–69

    Article  Google Scholar 

  • Colwell RK (2009) EstimateS user’s guide. http://viceroy.eeb.uconn.edu/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm

  • Crawley MJ (2007) The R book. Wiley, West Sussex

    Book  Google Scholar 

  • Croat TB (1978) Flora of Barro Colorado Island. Stanford University Press, Stanford

    Google Scholar 

  • Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ (2006) Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313:966–968

    Article  CAS  PubMed  Google Scholar 

  • Cunningham SA, Floyd RB, Weir TA (2005) Do Eucalyptus plantations host an insect community similar to remnant Eucalyptus forest? Austral Ecol 30:103–117

    Article  Google Scholar 

  • Davis JG, Stork NE, Brendell MJD, Hine SJ (1997) Beetle species diversity and faunal similarity in Venezuelan rainforest tree canopies. In: Stork NE, Adis J, Didham RK (eds) Canopy arthropods. Chapman and Hall, New York, pp 85–103

    Google Scholar 

  • Dominy NJ, Lucas PW, Wright SJ (2003) Mechanics and chemistry of rain forest leaves: canopy and understorey compared. J Exp Bot 54:2007–2014

    Article  CAS  PubMed  Google Scholar 

  • Erwin TL (1997) Biodiversity at its utmost: tropical forest beetles. Biodiversity, II. Understanding and protecting our biological resources. Joseph Henry Press, Washington, DC

  • Erwin TL, Scott JC (1980) Seasonal and size patterns, trophic structure, and richness of Coleoptera in the tropical arboreal ecosystem: the fauna of the tree Luehea seemannii Triana and Planch in the canal zone of Panama. Coleopterists Bull 34:305–322

    Google Scholar 

  • Estrada A, Coates-Estrada R, Dadda AA, Cammarano P (1998) Dung and carrion beetles in tropical rain forest fragments and agricultural habitats at Los Tuxtlas, Mexico. J Trop Ecol 14:577–593

    Article  Google Scholar 

  • Evans J (2001) The forests handbook: an overview of forest science. Wiley, Oxford

    Google Scholar 

  • FAO (2011) State of the world’s forest 2011. Rome

  • Farrell BD, Erwin TL (1988) Leaf-beetle community structure in an Amazonian rainforest canopy. In: Jolivet P, Petitpierre E, Hsiao TH (eds) Biology of Chrysomelidae. Kluwer Academic, Dordrecht, pp 73–90

    Chapter  Google Scholar 

  • Finch OD (2005) Evaluation of mature conifer plantations as secondary habitat for epigeic forest arthropods (Coleoptera: Carabidae; Araneae). For Ecol Manage 204:21–34

    Article  Google Scholar 

  • Garcia LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663

    Article  Google Scholar 

  • Garen EJ, Saltonstall K, Slusser JL, Mathias S, Ashton MS, Hall JS (2009) An evaluation of farmers’ experiences planting native trees in rural Panama: implications for reforestation with native species in agricultural landscapes. Agrofor Syst 76:219–236

    Article  Google Scholar 

  • Goldman RL, Goldstein LP, Daily GC (2008) Assessing the conservation value of a human-dominated island landscape: plant diversity in Hawaii. Biodivers Conserv 17:1765–1781

    Article  Google Scholar 

  • Gormley LHL, Furley PA, Watt AD (2007) Distribution of ground-dwelling beetles in fragmented tropical habitats. J Insect Conserv 11:131–139

    Article  Google Scholar 

  • Grimbacher PS, Catterall CP, Kanowski J, Proctor HC (2007) Responses of ground-active beetle assemblages to different styles of reforestation on cleared rainforest land. Biodivers Conserv 16:2167–2184

    Article  Google Scholar 

  • Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039

    Article  PubMed  Google Scholar 

  • Hammond PM (1994) Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philos Trans R Soc Lond Ser B Biol Sci 345:119–136

    Article  Google Scholar 

  • Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manage 155:81–95

    Article  Google Scholar 

  • Harvey CA, Medina A, Sanchez DM, Vilchez S, Hernandez B, Saenz JC, Maes JM, Casanoves F, Sinclair FL (2006) Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol Appl 16:1986–1999

    Article  PubMed  Google Scholar 

  • Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, Martinez-Ramos M, Morales H, Nigh R, Soto-Pinto L, Van Breugel M, Wishnie M (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv Biol 22:8–15

    Article  PubMed  Google Scholar 

  • Hopp PW, Ottermanns R, Caron E, Meyer S, Ross-Nickoll M (2010) Recovery of litter inhabiting beetle assemblages during forest regeneration in the Atlantic forest of Southern Brazil. Insect Conserv Divers 3:103–113

    Article  Google Scholar 

  • Houghton RA (2005) Tropical deforestation as a source of greenhouse gas emissions. In: Mutinho P, Schwartsman S (eds) Tropical deforestation and climate change. IPAM (Instituto de Pesquisa Ambiental da Amazonia) and Environmental Defense, Washington, DC

    Google Scholar 

  • ITTO (2006) Status of tropical forest management 2005. ITTO Technical Series No 24. International Tropical Timber Organization

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Kelty MJ (2006) The role of species mixtures in plantation forestry. For Ecol Manage 233:195–204

    Article  Google Scholar 

  • Koricheva J, Vehvilainen H, Riihimaki J, Ruohomaki K, Kaitaniemi P, Ranta H (2006) Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality? Can J For Res 36:324–336

    Article  Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310:1628–1632

    Article  CAS  PubMed  Google Scholar 

  • Lassau SA, Hochuli DF, Cassis G, Reid CAM (2005) Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Divers Distrib 11:73–82

    Article  Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Ann Rev Entomol 28:23–39

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltd., Oxford

    Google Scholar 

  • Mawdsley NA, Stork NE (1997) Host-specificity and the effective specialization of tropical canopy beetles. In: Stork NE, Adis JA, Didham RK (eds) Canopy arthropods. Chapman & Hall, London, pp 104–130

    Google Scholar 

  • Mody K, Bardorz HA, Linsenmair KE (2003) Organization of arthropod assemblages in individual African savanna trees. In: Basset Y, Novotny V, Miller SE, Kitching RL (eds) Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge, pp 198–212

    Google Scholar 

  • Moran VC, Southwood TRE (1982) The guild composition of arthropod communities in trees. J Anim Ecol 51:289–306

    Article  Google Scholar 

  • Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R Soc B Biol Sci 365:3709–3718

    Article  Google Scholar 

  • New TR (1983) Colonisation of seedling acacias by arthropods in southern Victoria. Austral Entomol Mag 10:13–19

    Google Scholar 

  • Novotny V, Basset Y (2005) Review: host specificity of insect herbivores in tropical forests. Proc R Soc B Biol Sci 272:1083–1090

    Article  Google Scholar 

  • Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    Article  CAS  PubMed  Google Scholar 

  • Ødegaard F (2004) Species richness of phytophagous beetles in the tropical tree Brosimum utile (Moraceae): the effects of sampling strategy and the problem of tourists. Ecol Entomol 29:76–88

    Article  Google Scholar 

  • Ødegaard F (2006) Host specificity, alpha- and beta-diversity of phytophagous beetles in two tropical forests in Panama. Biodivers Conserv 15:83–105

    Article  Google Scholar 

  • Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34

    Article  Google Scholar 

  • Park A, Wilson ER (2007) Beautiful plantations: can intensive silviculture help Canada to fulfill ecological and timber production objectives? For Chron 83:825–839

    Google Scholar 

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems—a new conservation paradigm. Ann N Y Acad Sci 1134:173–200

    Article  PubMed  Google Scholar 

  • Philpott SM, Arendt WJ, Armbrecht I, Bichier P, Diestch TV, Gordon C, Greenberg R, Perfecto I, Reynoso-Santos R, Soto-Pinto L, Tejeda-Cruz C, Williams-Linera G, Valenzuela J, Zolotoff JM (2008) Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv Biol 22:1093–1105

    Article  PubMed  Google Scholar 

  • Plath M, Mody K, Potvin C, Dorn S (2011a) Do multipurpose companion trees affect high value timber trees in a silvopastoral plantation system? Agrofor Syst 81:79–92

    Article  Google Scholar 

  • Plath M, Mody K, Potvin C, Dorn S (2011b) Establishment of native tropical timber trees in monoculture and mixed-species plantations: small-scale effects on tree performance and insect herbivory. For Ecol Manage 261:741–750

    Article  Google Scholar 

  • Plath M, Dorn S, Riedel J, Barrios H, Mody K (2012) Associational resistance and associational susceptibility: specialist herbivores show contrasting responses to tree stand diversification. Oecologia 169:477–487

    Article  PubMed  Google Scholar 

  • Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I (2011) Insect ecology: behavior, populations and communities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Riedel J, Dorn S, Plath M, Mody K (2012) Growth, herbivore distribution, and herbivore damage of timber trees in a tropical silvopastoral reforestation system. Ann For Sci. doi:10.1007/s13595-012-0239-7

    Google Scholar 

  • Riihimäki J, Kaitaniemi P, Koricheva J, Vehvilainen H (2005) Testing the enemies hypothesis in forest stands: the important role of tree species composition. Oecologia 142:90–97

    Article  PubMed  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Scherer-Lorenzen M, Bonilla JL, Potvin C (2007) Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116:2108–2124

    Article  Google Scholar 

  • Schulze CH, Waltert M, Kessler PJA, Pitopang R, Shahabuddin  , Veddeler D, Mühlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indivdator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 15:1321–1333

    Article  Google Scholar 

  • Sobek S, Scherber C, Steffan-Dewenter I, Tscharntke T (2009a) Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia 160:279–288

    Article  PubMed  Google Scholar 

  • Sobek S, Steffan-Dewenter I, Scherber C, Tscharntke T (2009b) Spatiotemporal changes of beetle communities across a tree diversity gradient. Divers Distrib 15:660–670

    Article  Google Scholar 

  • Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat 152:510–529

    Article  CAS  PubMed  Google Scholar 

  • Stork NE (1987) Guild structure of arthropods from Bornean rain-forest trees. Ecol Entomol 12:69–80

    Article  Google Scholar 

  • Stork NE, Adis J, Didham RK (1997) Canopy arthropods. Chapman and Hall, London

    Google Scholar 

  • Summerville KS, Crist TO, Kahn JK, Gering JC (2003) Community structure of arboreal caterpillars within and among four tree species of the eastern deciduous forest. Ecol Entomol 28:747–757

    Article  Google Scholar 

  • Szentkirályi F, Kozár F (1991) How many species are there in apple insect communities? Testing the resource diversity and intermediate disturbance hypotheses. Ecol Entomol 16:491–503

    Article  Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205

    Article  CAS  PubMed  Google Scholar 

  • Vehviläinen H, Koricheva J, Ruohomaki K (2008) Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117:935–943

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647

    Article  Google Scholar 

  • Wagner T (2000) Influence of forest type and tree species on canopy-dwelling beetles in Budongo Forest, Uganda. Biotropica 32:502–514

    Google Scholar 

  • Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeno N, Ibarra D, Condit R, Ashton PMS (2007) Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. For Ecol Manage 243:39–49

    Article  Google Scholar 

  • Wright DH (1983) Species–energy theory: an extension of species–area theory. Oikos 41:496–506

    Article  Google Scholar 

  • Zahawi RA (2005) Establishment and growth of living fence species: an overlooked tool for the restoration of degraded areas in the tropics. Restor Ecol 13:92–102

    Article  Google Scholar 

Download references

Acknowledgments

We thank Catherine Potvin for access to the Sardinilla site and useful discussions, the Smithsonian Tropical Research Institute for administration and logistics, as well as José Monteza and the Sardinilla personnel for assistance with fieldwork. The Panamanian National Environmental Authority (ANAM) granted the required permits. We thank Alexander Konstantinov (Systematic Entomology Laboratory, Agricultural Research Service, US Department of Agriculture), David Furth (Smithsonian Natural History Museum, Washington), Michael Geisthardt, Ronald Sanchez and Carlos Salgado for help with insect identification; Andreas Müller and Heather Kirk for useful comments on the manuscript. This study has been supported by a grant of the ETH North–South Centre to S.D. and K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Mody.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plath, M., Dorn, S., Barrios, H. et al. Diversity and composition of arboreal beetle assemblages in tropical pasture afforestations: effects of planting schemes and tree species identity. Biodivers Conserv 21, 3423–3444 (2012). https://doi.org/10.1007/s10531-012-0372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0372-5

Keywords

Navigation