Toward improved conservation management: a consideration of sensory ecology

Abstract

All organisms rely on sensory systems to obtain, interpret, and respond to information available in their environment. With rapid alterations of ecosystems occurring across the globe, organisms are being faced with sensory challenges that result in behavioural changes and disruptions with potential population-level consequences. Through a consideration of sensory ecology, it is possible to identify the underlying causes of disturbances at the individual level and use this information to develop better-informed, highly targeted, and more effective management strategies. Indeed, sensory-based approaches have already been successful in response to a variety of conservation issues. This article provides a general discussion of how a consideration of sensory ecology can benefit conservation biology and proceeds to describe three areas of rapid growth and potential for expansion: (1) mitigation of anthropogenic noise disturbance; (2) prevention and amelioration of ecological and other evolutionary traps; (3) targeted population control with special attention to aquatic invasive species. I conclude with general recommendations on how sensory ecologists and conservation biologists can mutually benefit from integrated endeavours.

This is a preview of subscription content, access via your institution.

References

  1. Ali MA (1978) Sensory ecology review and perspectives. Plenum, New York

    Google Scholar 

  2. Amorim MCP (1996) Sound production in the blue green damselfish Chromis viridis (Cuvier,1830) (Pomacentridae). Bioacoustics 6:265–272

    Article  Google Scholar 

  3. Baker C, Hicks BJ (2003) Attraction of migratory inanga (Galaxias maculatus) and koaro (Galaxias brevipinnis) juveniles to adult galaxiid odours. N Z J Mar Freshw Res 37:291–299

    Article  Google Scholar 

  4. Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25:180–189

    Article  PubMed  Google Scholar 

  5. Barton DC, Holmes AL (2007) Off-highway vehicle trail impacts on breeding songbirds in northeastern California. J Wildl Manag 71:1617–1620

    Article  Google Scholar 

  6. Battin J (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv Biol 18:1482–1491

    Article  Google Scholar 

  7. Belanger RM, Smith CM, Corkum LD, Zielinski B (2003) Morphology and histochemistry of the peripheral olfactory organ in the round goby, Neogobius melanostomus (Teleostei: gobiidae). J Morphol 257:62–71

    Article  PubMed  Google Scholar 

  8. Bowdan E, Wyse GA (1996) Sensory ecology: introduction. Biol Bull 191:122–123

    Article  Google Scholar 

  9. Buckstaff KC (2004) Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar Mammal Sci 20:709–725

    Article  Google Scholar 

  10. Campbell-Palmer R, Rosell F (2011) The importance of chemical communication studies to mammalian conservation biology: a review. Biol Conserv 144:1919–1930

    Article  Google Scholar 

  11. Caro T, Sherman PW (2011) Endangered species and a threatened discipline. Trends Ecol Evol 26:111–118

    Article  PubMed  Google Scholar 

  12. Carroll SP, Watters JW (2008) Driving phenotypic variability with genetic and environmental heterogeneity: adaptation as a first principle of conservation management. In: Carroll SP, Fox CW (eds) Conservation biology—evolution in action. Oxford University Press, Oxford, pp 181–198

    Google Scholar 

  13. Christy JH (1995) Mimicry, mate choice, and the sensory trap hypothesis. Am Nat 146:171–181

    Article  Google Scholar 

  14. Clemmons JR, Buchholz R (1997) Linking conservation and behavior. In: Clemmons JR, Buchholz R (eds) Behavioral approaches to conservation in the wild. Cambridge University Press, Cambridge, pp 3–22

    Google Scholar 

  15. Corkum LD (2004) Pheromone signalling in conservation. Aquat Conserv 14:327–331

    Article  Google Scholar 

  16. Crossland MR, Haramura T, Salim AA, Capon RJ, Shine R (2012) Exploiting intraspecific competitive mechanisms to control invasive cane toads (Rhinella marina). Proc R Soc B 279:3436–3442

    Article  CAS  PubMed  Google Scholar 

  17. Curio E (1996) Conservation needs ethology. Trends Ecol Evol 11:260–263

    Article  CAS  PubMed  Google Scholar 

  18. Dangles O, Irschick D, Chittka L, Casas J (2009) Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology. Q Rev Biol 84:51–74

    Article  PubMed  Google Scholar 

  19. Dooling RJ, Popper AN (2007) The effects of highway noise on birds. Environmental bioacoustics LLC report for California Department of Transportation

  20. Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: Dooling RJ, Popper AN, Fay RR (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 308–359

    Google Scholar 

  21. Dusenbery DB (1992) Sensory ecology: how organisms acquire and respond to information. W. H. Freeman, New York

    Google Scholar 

  22. Edwards DP, Yu DW (2007) The role of sensory traps in the origin, maintenance, and breakdown of mutualism. Behav Ecol Sociobiol 61:1321–1327

    Article  Google Scholar 

  23. Eigenbrod F, Hecnar SJ, Fahrig L (2008) The relative effects of road traffic and forest cover on anuran populations. Biol Conserv 141:35–46

    Article  Google Scholar 

  24. Endler JA, Basolo AL (1998) Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol 13:415–420

    Article  CAS  PubMed  Google Scholar 

  25. Francis CD, Ortega CP, Cruz A (2009) Noise pollution changes avian communities and species interactions. Curr Biol 19:1415–1419

    Article  CAS  PubMed  Google Scholar 

  26. Gilroy JJ, Sutherland WJ (2007) Beyond ecological traps: perceptual errors and undervalued resources. Trends Ecol Evol 22:351–356

    Article  PubMed  Google Scholar 

  27. Great Lakes Fishery Commission (2010) Synthesized sex pheromones lure lampreys into traps. News release, August 10, 2010

  28. Halfwerk W, Bot S, Buikx J, van der Velde M, Komdeur J, ten Cate C, Slabbekoorn H (2011a) Low frequency songs lose their potency in noise urban conditions. Proc Natl Acad Sci USA 108:14549–14554

    Article  CAS  PubMed  Google Scholar 

  29. Halfwerk W, Holleman LJM, Lessells CM, Slabbekoorn H (2011b) Negative impact of traffic noise on avian reproductive success. J Appl Ecol 48:210–219

    Article  Google Scholar 

  30. Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214

    Article  Google Scholar 

  31. Hedrick P (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636

    Article  Google Scholar 

  32. Higgs DM (2005) Auditory cues as ecological signals for marine fishes. In: Weissberg MJ, Browman HI (Coords). Sensory biology: linking the internal and external ecologies of marine organisms. Mar Ecol Prog Ser 287:263–307

    Article  Google Scholar 

  33. Horvath G, Blaho M, Egri A, Kriska G, Seres I, Robertson B (2010) Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Conserv Biol 24:1644–1653

    Article  PubMed  Google Scholar 

  34. Imre I, Brown GE, Bergstedt RA, McDonald R (2010) Use of chemosensory cues as repellents for sea lamprey: potential directions for population management. J Gt Lakes Res 36:790–793

    Article  CAS  Google Scholar 

  35. Johnson NS, Siefkes MJ, Li W (2005) Capture of ovulating female sea lampreys in traps baited with spermiating male sea lampreys. N Am J Fish Manag 25:67–72

    Article  Google Scholar 

  36. Kasumyan AO (2009) Acoustic signaling in fish. Jpn J Ichthyol 49:963–1020

    Article  Google Scholar 

  37. Klump GM (1996) Bird communication in a noisy world. In: Kroodsma DE, Kroodsma EH (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, New York, pp 321–328

    Google Scholar 

  38. Landa A, Tømmeras BA (1997) A test of aversion agents on wolverines. J Wildl Manag 6:510–516

    Google Scholar 

  39. Letcher BH, Priddy JA, Walters JR, Crowder LB (1998) An individual-based, spatially-explicit simulation model of the population dynamics of the endangered red-cockaded woodpecker, Picoides borealis. Biol Conserv 86:1–14

    Article  Google Scholar 

  40. Li W, Scott AP, Siefkas MJ, Yan H, Liu Q, Yun SS, Gage DA (2002) Bile acid secreted by male sea lamprey that acts as sex pheromone. Science 296:138–141

    Article  CAS  PubMed  Google Scholar 

  41. Margles SW, Peterson RB, Ervin J, Kaplin BA (2010) Conservation without borders: building communication and action across disciplinary boundaries for effective conservation. Environ Manag 45:1–4

    Article  Google Scholar 

  42. Martin GR (2011a) Through birds’ eyes: insights into avian sensory ecology. J Ornithol. doi:10.1007/s10336-011-0771-5

    Google Scholar 

  43. Martin GR (2011b) Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153:239–254

    Article  Google Scholar 

  44. McGregor P (2005) Animal communication networks. Cambridge University Press, New York

    Google Scholar 

  45. Myrberg AA Jr, Spires JY (1972) Sound discrimination by the bicolor damselfish, Eupomacentrus partitus. J Exp Biol 57:727–735

    Google Scholar 

  46. Parks SE, Clark CW (2007) Short- and long-term changes in right whale calling behavior: the potential effects of noise on acoustic communication. J Acoust Soc Am 122:3725–3731

    Article  PubMed  Google Scholar 

  47. Patricelli GL, Blickley JL (2006) Avian communication in urban noise: causes and consequences of vocal adjustment. Auk 123:639–649

    Article  Google Scholar 

  48. Piersma T (2011) From spoonbill to Spoon-billed Sandpiper: the perceptual dimensions to the niche. Ibis 153:659–661

    Article  Google Scholar 

  49. Popper AN, Hastings MC (2009) The effects of human-generated sound on fish. Int Zool 4:43–52

    Article  Google Scholar 

  50. Rabin LA, McCowan B, Hooper SL, Owings DH (2003) Anthropogenic noise and its effect on animal communication: an interface between comparative psychology and conservation biology. Int J Comp Psychol 16:172–192

    Google Scholar 

  51. Rheindt FE (2003) The impact of roads on birds: does song frequency play a role in determining susceptibility to noise pollution? J Ornithol 144:295–306

    Google Scholar 

  52. Richardson WJ, Würsig B, Greene CR (1986) Reactions of bowhead whales, Balaena mysticetus, to seismic exploration in the Canadian Beaufort Sea. J Acoust Soc Am 79:1117–1128

    Article  CAS  PubMed  Google Scholar 

  53. Robertson BA, Hutto RL (2006) A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87:1075–1085

    Article  PubMed  Google Scholar 

  54. Rollo A, Higgs D (2008) Differential acoustic response specificity and directionality in the round goby, Neogobius melanostomus. Anim Behav 75:1903–1912

    Article  Google Scholar 

  55. Rollo A, Andraso G, Janssen J, Higgs D (2007) Attraction and localization of round goby (Neogobius melanostomus) to conspecific calls. Behaviour 144:1–21

    Article  Google Scholar 

  56. Rosell F, Czech A (2000) Responses of foraging Eurasian beavers Castor fiber to predator odours. Wildl Biol 6:13–21

    Google Scholar 

  57. Sawyer H, Nielson RM, Lindzey F, McDonald LL (2006) Winter habitat selection of mule deer before and during development of a natural gas field. J Wildl Manag 70:396–403

    Article  Google Scholar 

  58. Schaub A, Ostwald J, Siemers BM (2008) Foraging bats avoid noise. J Exp Biol 211:3174–3180

    Article  PubMed  Google Scholar 

  59. Scheifele PM, Andrew S, Cooper RA, Darre M, Musiek FE, Max L (2005) Indication of a Lombard vocal response in the St. Lawrence River beluga. J Acoust Soc Am 117:1486–1492

    Article  CAS  PubMed  Google Scholar 

  60. Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 117:474–480

    Article  Google Scholar 

  61. Schmidt KA, Dall SRX, van Gils JA (2010) The ecology of information: an overview on the ecological significance of making informed decisions. Oikos 119:304–316

    Article  Google Scholar 

  62. Siemers BM, Schaub A (2011) Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proc R Soc B 278:1646–1652

    Article  PubMed  Google Scholar 

  63. Sih A, Ferrari MCO, Harris DJ (2011) Evolution and behavioural responses to human-induced rapid environmental change. Evol Appl 4:367–387

    Article  Google Scholar 

  64. Slabbekoorn H, Ripmeester EAP (2008) Birdsong and anthropogenic noise: implications and applications for conservation. Mol Ecol 17:72–83

    Article  PubMed  Google Scholar 

  65. Sorensen PW, Stacey NE (2004) Brief review of fish pheromones and discussion of their possible uses in the control of non-indigenous teleost fishes. N Z J Mar Freshw Res 38:399–417

    Article  CAS  Google Scholar 

  66. Sorensen PW, Vrieze LA (2003) The chemical ecology and potential application of the sea lamprey migratory pheromone. J Gt Lakes Res 29:66–84

    Article  CAS  Google Scholar 

  67. Southwood A, Fritsches K, Brill R, Swimmer Y (2008) Sound, chemical, and light detection in sea turtles and pelagic fishes: sensory-based approaches to bycatch reduction in longline fisheries. End Sp Res 5:225–238

    Article  Google Scholar 

  68. Stacey NE, Sorensen PW (2005) Hormones, pheromones, and reproductive behaviors. In: Sloman KA, Balshine S, Wilson RW (eds) Behaviour: interactions with fish physiology. Academic, New York, pp 359–412

    Google Scholar 

  69. Stalhandske P (2002) Nuptial gifts of male spiders function as sensory traps. Proc R Soc Lond B Biol 269:905–908

    Article  Google Scholar 

  70. Stebbing PD, Watson GJ, Bentley MG, Fraser D, Jennings R, Rushton SP, Sibley PJ (2004) Evaluation of the capacity of pheromones for control of invasive non-native crayfish. English nature research reports no. 578, English Nature, Peterborough

  71. Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–100

    Article  Google Scholar 

  72. Stowers L, Marton TF (2005) What is a pheromone? Mammalian pheromones reconsidered. Neuron 46:699–702

    Article  CAS  PubMed  Google Scholar 

  73. Swaisgood RR (2010) The conservation-welfare nexus in reintroduction programmes: a role for sensory ecology. Anim Welf 19:125–137

    CAS  Google Scholar 

  74. ten Cate C, Rowe C (2007) Biases in signal evolution: learning makes a difference. Trends Ecol Evol 22:380–387

    Article  PubMed  Google Scholar 

  75. Thomsen F, Ludemann K, Kafemann R, Piper W (2006) Effects of offshore wind farm noise on marine mammals and fish. Biola, Hamburg

    Google Scholar 

  76. Wagner RH, Danchin E (2010) A taxonomy of biological information. Oikos 119:203–209

    Article  Google Scholar 

  77. Wagner CM, Jones ML, Twohey MB, Sorensen PW (2006) A field test verifies the pheromones can be useful for sea lamprey (Petromyzon marinus) control in the Great Lakes. Can J Fish Aquat Sci 63:475–479

    Article  CAS  Google Scholar 

  78. Warren PS, Katti M, Ermann M, Brazel A (2006) Urban bioacoustics it’s not just noise. Anim Behav 71:491–502

    Article  Google Scholar 

  79. Weatherhead PJ, Madsen T (2009) Linking behavioural ecology to conservation objectives. In: Mullin SJ, Seigel RA (eds) Snakes: ecology and conservation. Cornell University Press, New York

    Google Scholar 

  80. Weilgart LS (2007) The impacts of anthropogenic noise on cetaceans and implications for management. Can J Zool 85:1091–1116

    Article  Google Scholar 

  81. Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46

    Article  PubMed  Google Scholar 

  82. Witherington BE, Martin RE (2003) Understanding, assessing, and resolving light-pollution problems on sea turtle nesting beaches. Florida Marine Institute technical reports. Florida Fish and Wildlife Conservation Commission FMRI technical report TR-2

  83. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100

    Article  CAS  PubMed  Google Scholar 

  84. Zaida A, Belanger A, Higgs D (2006) A sound approach for round goby control. Annual conference on Great Lakes research 49

Download references

Acknowledgments

I would like to thank Dr. Dennis Higgs, Jeffrey Zeyl, and two anonymous reviewers for helpful comments on the manuscript. This work is supported by funding from the University of Windsor and an Ontario Graduate Scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christine L. Madliger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Madliger, C.L. Toward improved conservation management: a consideration of sensory ecology. Biodivers Conserv 21, 3277–3286 (2012). https://doi.org/10.1007/s10531-012-0363-6

Download citation

Keywords

  • Conservation biology
  • Sensory ecology
  • Ecological trap
  • Invasive species
  • Anthropogenic noise