Biodiversity and Conservation

, Volume 21, Issue 8, pp 1937–1951 | Cite as

How plant inventories improve future monitoring

Original Paper

Abstract

Plant inventories are at the heart of conservation efforts. Despite their obvious conservation values, properties of these datasets are poorly understood. We use plant databases from three different well-established inventories [rare plants in California (CA), Spanish threatened plants (SP) and the Proteaceae in South Africa (SA)] to explore the behavior of large data sets in facilitating the link between current field surveys and future standardized monitoring methods. We analyze area frequency curves of the species area size for each data set and for a series of extracted databases from each inventory. Our results show that all field surveys produced left-skewed frequency distributions. A lognormal distribution is better fitted by SA, followed by CA and finally by SP, which is least suited to a lognormal fit. Using the most threatened portion of the three floras, these general patterns still apply. Secondly, a minimum sample analysis indicates that precision increases according to sample size. Proportionally, CA data require less sampling effort than the Spanish pool and the latter require less than do SA in order to get a clear monitoring trend. Larger skewness values are related to inventories with wider scope. SA Proteas display the most skewed distribution. Skewness in California may be explained not only by the nature and scope of the inventory but also by the scale used for mapping. The Spanish database is also affected by surveyor bias towards the most endangered portion of the data set. Monitoring should take into account the original nature of each inventory. Particular inventory methods and scope may produce different outputs, constraining future monitoring programs. Key aspects are skewness and variation, and both combined could identify inventories in need of better data collection practices for more precise estimates of changes in biodiversity.

Keywords

Categories of threat Hollow curve Lognormal distribution Mediterranean plant conservation Rarity Sample size Skewness Threatened plants 

References

  1. AA VV (2000) Lista roja de flora vascular española (valoración según categorías UICN). Conservación Vegetal 6 (extra), pp 11–38Google Scholar
  2. Anthos (2011) Sistema de Información sobre las plantas de España. http://www.anthos.es/. Accessed 7 Feb 2011
  3. Baillie JEM, Collen B, Amin R et al (2008) Toward monitoring global biodiversity. Conserv Lett 1(1):18–26CrossRefGoogle Scholar
  4. Bañares Baudet Á, Blanca G, Güemes J et al (2004) Atlas y libro rojo de la flora vascular amenazada de España, 2ª edición edn. Dirección General de Conservación de la Naturaleza, MadridGoogle Scholar
  5. Brauer J, Czech B, Trauger DL et al (2005) Establishing indicators for biodiversity. Science 308:791–792PubMedCrossRefGoogle Scholar
  6. BRC (2011) The biological records centre. http://www.brc.ac.uk/. Accessed 7 Feb 2011
  7. Chisholm RA (2007) Sampling species abundance distributions: resolving the veil-line debate. J Theor Biol 247(4):600–607PubMedCrossRefGoogle Scholar
  8. CNDDB (2010) California Natural Diversity Database. California Department of Fish and Game. http://www.dfg.ca.gov/biogeodata/cnddb/. Accessed 15 Jan 2010
  9. CNPS (2010) California Native Plant Society. Inventory of rare, threatened, and endangered plants of California. http://www.rareplants.cnps.org/. Accessed 15 Dec 2010
  10. Dale VH, Franklin RLA, Post WM et al (1991) Sampling ecological information—choice of sample-size. Ecol Model 57:1–10CrossRefGoogle Scholar
  11. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Ann Rev Environ Resour 28:137–167CrossRefGoogle Scholar
  12. Dixon PM (1993) The Bootstrap and the Jacknife: describing the precision of ecological indices. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman & Hall, New YorkGoogle Scholar
  13. Domínguez Lozano F, Schwartz MW (2005) Patterns of rarity and taxonomic group size in plants. Biol Conserv 126:146–154CrossRefGoogle Scholar
  14. Euro Med PlantBase (2011) The information resource for Euro-Mediterranean plant diversity. http://www.emplantbase.org/. Accessed 7 Feb 2011
  15. FloraBase (2011) FloraBase—the Western Australia flora. http://florabase.dec.wa.gov.au/. Accessed 7 Feb 2011
  16. Gaston KJ, Quinn RM, Blackburn TM et al (1998) Species-range size distributions in Britain. Ecography 21:361–370CrossRefGoogle Scholar
  17. GBIF (2011) The global biodiversity information facility. http://data.gbif.org/. Accessed 7 Feb 2011
  18. Green RE, Balmford A, Crane PR et al (2005) A framework for improved monitoring of biodiversity: responses to the world summit on sustainable development. Conserv Biol 19:56–65CrossRefGoogle Scholar
  19. Gregory RD (2000) Abundance patterns of European breeding birds. Ecography 23:201–208CrossRefGoogle Scholar
  20. Hammond PM (1994) Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philos Trans R Soc B 345:119–136CrossRefGoogle Scholar
  21. Hewett P (1995) Sample size formulae for estimating the true arithmetic or geometric mean of lognormal exposure distributions. Am Ind Hyg Assoc J 56(3):219–225CrossRefGoogle Scholar
  22. Hood GM (2006) PopTools version 2.7.5. Available via internet. http://www.cse.csiro.au/poptools. Accessed 15 Jan 2010
  23. IUCN (2001) IUCN red list categories. Prepared by the IUCN Species Survival Commission. As approved by the 51st meeting of the IUCN Council Gland. Switzerland UICN, Gland, SuizaGoogle Scholar
  24. Joanes DN, Gill CA (1998) Comparing measures of sample skewness and kurtosis. J R Stat Soc Ser D 47(1):183–189CrossRefGoogle Scholar
  25. Keddy PA (1991) Biological monitoring and ecological prediction: from nature reserve management to national state of the environment indicators. In: Goldsmith FB (ed) Monitoring for conservation and ecology. Chapman and Hall, LondonGoogle Scholar
  26. Marsh MM, Trenham PC (2008) Current trends in plant and animal population monitoring. Conserv Biol 22(3):647–655PubMedCrossRefGoogle Scholar
  27. Martín-Piera F (2000) Estimaciones prácticas de biodiversidad utilizando táxones de alto rango en insectos. In: Martín-Piera F, Morrone JJ, Melic A (eds) Hacia un proyecto CYTED para el inventario y estimación de la diversidad. Monografías Tercer Milenio 1, SEA, ZaragozaGoogle Scholar
  28. Moreno Saiz JC (coord.) (2008) Lista roja 2008 de la flora vascular española. Dirección General de Medio Natural y Política Forestal. MMAMRM-SEBCGoogle Scholar
  29. Moreno Saiz JC, Domínguez Lozano F, Sainz Ollero H (2003) Recent progress in conservation of threatened Spanish vascular flora: a critical review. Biol Conserv 113:419–431CrossRefGoogle Scholar
  30. Moreno Saiz JC, Suarez L, Tapia F (2008) 25 questions on the 2008 red list. In: Moreno Saiz JC (coord.) Lista roja 2008 de la flora vascular española. Dirección General de Medio Natural y Política Forestal (MMAMRM-SEBC)Google Scholar
  31. Olsen AR, Sedransk J, Edwards D et al (1999) Statistical issues for monitoring ecological and natural resources in the United States. Environ Monit Assess 54:1–45CrossRefGoogle Scholar
  32. Pitman NCA, Jørgensen PM (2002) Estimating the size of the world’s threatened flora. Science 298:989PubMedCrossRefGoogle Scholar
  33. Preston FW (1962) Canonical distribution of commonness and rarity 1. Ecology 43(2):185–215CrossRefGoogle Scholar
  34. R (2009) R version 2.10.1 (2009-12-14). The R foundation for statistical computingGoogle Scholar
  35. Rapoport EH (1975) Areografía: estrategias geográficas de las especies. Fondo de Cultura Económica, MéxicoGoogle Scholar
  36. Rebelo AG (1991) Protea atlas manual. Protea Atlas Project, KirstenboschGoogle Scholar
  37. SCBD, Secretariat of the convention on biological diversity (2002) Global strategy for plant conservation. Botanic Gardens Conservation InternationalGoogle Scholar
  38. Scholes RJ, Biggs R (2005) A biodiversity intactness index. Nature 434:45–49PubMedCrossRefGoogle Scholar
  39. Schwartz MW, Simberloff D (2001) Taxon size predicts rates of rarity in vascular plants. Ecol Lett 4:464–469CrossRefGoogle Scholar
  40. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman, New YorkGoogle Scholar
  41. Tropicos (2011) Tropicos.org. Missouri botanical garden. http://www.tropicos.org. Accessed 7 Feb 2011
  42. Williams CB (1964) Patterns in the balance of nature and related problems in quantitative ecology. Academic Press, LondonGoogle Scholar
  43. Williamson M, Gaston KJ (2005) The lognormal distribution is not an appropriate null hypothesis for the species-abundance distribution. J Anim Ecol 74:409–422CrossRefGoogle Scholar
  44. Willis JC, Yule GU (1922) Some statistics of evolution and geographical distribution in plants and animals, and their significance. Nature 109:177–179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • F. Domínguez Lozano
    • 1
  • A. G. Rebelo
    • 2
  • R. Bittman
    • 3
  1. 1.Departamento de Biología Vegetal I, Facultad de BiologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Threatened Species ProgrammeSouth African National Biodiversity InstituteKirstenboschSouth Africa
  3. 3.Department of Fish and GameCalifornia Natural Diversity DatabaseSacramentoUSA

Personalised recommendations