Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org 60:141–148
PubMed
Article
CAS
Google Scholar
Briggs CJ, Knapp RA, Vredenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. PNAS 107:9695–9700
PubMed
Article
CAS
Google Scholar
Cory JS, Myers JH (2000) Direct and indirect ecological effects of biological control. TREE 15:137–139
Google Scholar
Ibelings BW, Gsell AS, Mooij WM, Van Donk E, Van Den Wyngaert S, De Senerpont Domis LN (2011) Chytrid infections and diatom spring blooms: paradoxical effects of climate warming on fungal epidemics in lakes. Freshwater Biol 56:754–766
Article
Google Scholar
Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. TREE 25:362–371
PubMed
Google Scholar
Kagami M, Van Donk E, de Bruin A, Rijkeboer M, Ibelings BW (2004) Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr 49:680–685
Article
Google Scholar
Kagami M, von Elert E, Ibelings BW, de Bruin A, Van Donk E (2007) The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga. Asterionella Proc R Soc B 274:1561–1566
Article
Google Scholar
Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Eco Lett 9:485–498
Article
CAS
Google Scholar
Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis, gen et sp nov a chytrid pathogenic to amphibians. Mycol 91:219–227
Article
Google Scholar
Lubick N (2010) Emergency medicine for frogs. Nature 465:680–681
PubMed
Article
CAS
Google Scholar
McCallum ML (2007) Amphibian decline or extinction? Current declines dwarf background extinction rate. J Herpetol 41:483–491
Article
Google Scholar
Mendelson JR III, Lips KR, Gagliardo RW, Rabb GB, Collins JP, Diffendorfer JE, Daszak P, Ibanez R, Zippel KC, Laweson DP, Wright KM, Stuart SN, Gascon C, da Silva HR, Burrowes PA, Joglar RL, La Marca E, Lotters S, du Preez LH, Weldon C, Hyatt A, Rodriguez-Mahecha JV, Hunt S, Robertson H, Lock B, Raxworthy CJ, Frost DR, Lacy RC, Alford RA, Campbell JA, Parra-Olea G, Bolanos F, Domingo JJC, Halliday T, Murphy JB, Wake MH, Coloma LA, Kuzmin SL, Price MS, Howell KM, Lau M, Pethiyagoda R, Boone M, Lannoo MJ, Blaustein AR, Dobson A, Griffiths RA, Crump ML, Wake DB, Brodie ED (2006) Biodiversity—Confronting amphibian declines and extinctions. Science 313:48
PubMed
Article
CAS
Google Scholar
Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth 4:125–134
Article
Google Scholar
Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ALS, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786
PubMed
Article
CAS
Google Scholar
Thorp JH, Covich AP (2010) Ecology and classification of North American freshwater invertebrates, 3rd edn. Academic Press, San Diego
Google Scholar
Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. PNAS 107:9689–9694
PubMed
Article
CAS
Google Scholar
Woodhams DC, Bosch J, Briggs CJ, Cashins S, Davis LR, Lauer A, Muths E, Puschendorf R, Schmidt BR, Sheafor B, Voyles J (2011) Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front Zool 8. doi:10.1186/1742-9994-8-8 (in press)