Skip to main content

Advertisement

Log in

Soil millipede diversity in tropical forest patches and its relation to landscape structure in northeastern Puerto Rico

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Uncontrolled urban development is threatening the survival of many terrestrial species worldwide, especially those with limited dispersal capabilities. Soil invertebrates account for a high proportion of the global biodiversity but there are few studies on how soil biodiversity varies with different parameters of landscape structure, especially in fragmented tropical habitats. Millipedes are among the most abundant detritivore invertebrates in the soil-litter macrofauna. We examined the relationships between soil millipede diversity and landscape structure in 12 forest patches of approximately 30 years of age, in northeastern Puerto Rico. Spatial characteristics of the landscape were determined from aerial color photographs and were digitized into a GIS package for analysis. Millipede species diversity and composition in these forest patches showed correlations with their surroundings (e.g. amount of forest in the matrix) and with the presence of vegetation corridors that connected to other forest patches, rather than forest patch attributes such as patch area and shape. Millipede species richness correlated negatively with the degree of isolation of forest patch (within 600 m radius), while species evenness correlated positively to the amount of forest within a 50 m buffer. Millipede species composition was related with the presence of vegetation corridors and the distance to the Luquillo Experimental Forest reserve. These findings show that a low degree of patch isolation, forested buffers, and presence of vegetation corridors need to be considered for the conservation and management of forest patches surrounded by urban developments, especially to protect terrestrial invertebrate species that require forested habitats for their dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achard F, Eva HD, Stibig H, Mayaux P, Gallego J, Richards T, Malingreau J (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    Article  PubMed  CAS  Google Scholar 

  • Achard F, Defries R, Eva H, Hansen M, Mayaux P, Stibig HJ (2007) Pan-tropical monitoring of deforestation. Environ Res Lett 2:1–11

    Article  Google Scholar 

  • Aide TM, Zimmerman JK, Herrera L, Rosario M, Serrano M (1995) Forest recovery in abandoned tropical pastures in Puerto Rico. Forest Ecol Manag 77:77–86

    Article  Google Scholar 

  • Appel A (1988) Water relations and desiccation tolerance of migrating garden millipedes (Diplopoda: Paradoxosomatidae). Environ Entomol 17:463–466

    Google Scholar 

  • Asner GP, Rudel TK, Aide M, Defries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23:1386–1395

    Article  PubMed  Google Scholar 

  • Bailey S (2007) Increasing connectivity in fragmented landscapes: An investigation of evidence for biodiversity gain in woodlands. Forest Ecol Manag 238:7–23

    Article  Google Scholar 

  • Barberena-Arias MF, Aide TM (2003) Species diversity and trophic composition of litter insects during plant secondary succession. Carib J Sci 39:161–168

    Google Scholar 

  • Baum KA, Haynes KJ, Dillemuth FP, Cronin JT (2004) The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85:2671–2676

    Article  Google Scholar 

  • Beals EW (1984) Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv Ecol Res 14:1–55

    Article  Google Scholar 

  • Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252

    Article  Google Scholar 

  • Bengtsson J (2002) Disturbance and resilience in soil animal communities. Eur J Soil Biol 38:119–125

    Article  Google Scholar 

  • Berggren A, Birath B, Kindvall O (2002) Effects of corridors and habitat edges on dispersal behavior, movement rates, and movement angles in Roesel’s bush-cricket (Metrioptera roeseli). Conserv Biol 16:1562–1569

    Article  Google Scholar 

  • Bierregaard RO Jr, Lovejoy TE, Kapos V, DosSantos AA, Hutchings RW (1992) The biological dynamics of tropical rainforest fragments. Bioscience 42:859–866

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities in southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Brussaard L (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570

    Google Scholar 

  • Burkey TV (1988) Extinction in nature reserves: the effect of fragmentation and of migration between reserves fragments. Oikos 55:75–81

    Article  Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  PubMed  CAS  Google Scholar 

  • Chazdon RL, Peres CA, Dent D, Sheil D, Lugo AE, Lamb D, Stork NE, Miller SE (2009) The potential for species conservation in tropical secondary forests. Conserv Biol 23:1406–1417

    Article  PubMed  Google Scholar 

  • Chinea JD, Helmer EH (2003) Diversity and composition of tropical secondary forests recovering from large-scale clearing: results from the 1990 inventory in Puerto Rico. Forest Ecol Manag 180:227–240

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Colwell RK (2000) EstimateS v 6.0

  • Cook WM, Lane KT, Foster BL, Holt RD (2002) Island theory, matrix effects and species richness patterns in habitat fragments. Ecol Lett 5:619–623

    Article  Google Scholar 

  • Dangerfield JM (1998) Biology and ecology of millipedes in the Kalahari. Trans R Soc S Afr 53:183–194

    Article  Google Scholar 

  • Dangerfield JM, Milner AE, Matthews R (1992) Seasonal activity patterns and behaviour of juliform millipedes in south-eastern Botswana. J Trop Ecol 8:451–464

    Article  Google Scholar 

  • Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Woltersm V (2003) Landscape structure as indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98:321–329

    Article  Google Scholar 

  • Dauber J, Purtauf T, Allspach A, Frisch J, Voigtländer K, Wolters V (2005) Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Global Ecol Biogeogr 14:213–221

    Article  Google Scholar 

  • David JF (2009) Ecology of millipedes (Diplopoda) in the context of global change. Soil Org 81:719–733

    Google Scholar 

  • de Blois S, Domon G, Bouchard A (2002) Landscape issues in plant ecology. Ecography 25:244–256

    Article  Google Scholar 

  • Didham RK (1997) The influence of edge effects and forest fragmentation on leaf litter invertebrates in Central Amazonia. In: Laurance WF, Bierregaard RO Jr (eds) Tropical forest remnants: ecology, management, and conservation of fragmented communities. University of Chicago, Chicago

    Google Scholar 

  • Didham RK, Ghazoul J, Stork NE, Davis AJ (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11:255–260

    Article  PubMed  CAS  Google Scholar 

  • Dietz JL (1986) Economic history of Puerto Rico: institutional change and capitalist development. Princeton University Press, New Jersey

    Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • du Toit JT, Walker BH, Campbell BM (2004) Conserving tropical nature: current challenges for ecologists. Trends Ecol Evol 19:12–17

    Article  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74

    Article  Google Scholar 

  • Fahrig L, Merriam G (1985) Habitat patch connectivity and population survival. Ecology 66:1762–1768

    Article  Google Scholar 

  • Fonseca CR (2009) The silent mass extinction of insect herbivores in biodiversity hot spots. Conserv Biol 23:1507–1515

    Article  PubMed  Google Scholar 

  • Galanes IT, Thomlinson JR (2009) Relationships between spatial configuration of tropical forest patches and woody plant diversity in northeastern Puerto Rico. Plant Ecol 201:101–113

    Article  Google Scholar 

  • Gibbs JP (1998) Amphibian movements in response to forest edges, roads, and streambeds in southern New England. J Wildl Manag 62:584–589

    Article  Google Scholar 

  • Golovatch SI, Kime RD (2009) Millipede (Diplopoda) distributions: a review. Soil Org 81:565–597

    Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Article  Google Scholar 

  • Haddad NM, Bowne DR, Cunningham A, Danielson BJ, Levey DJ, Sargent S, Spira T (2003) Corridor use by diverse taxa. Ecology 84:609–615

    Article  Google Scholar 

  • Hamer ML, Slotow RH, Lovell S (2006) The South African savanna millipede (Diplopoda) fauna: taxonomic diversity, endemism, spatial and temporal effects on conservation assessments. Nor J Entomol 53:321–334

    Google Scholar 

  • Hanski IA (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski IA, Gilpin ME (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, London

    Google Scholar 

  • Hättenschwiler S, Tiunov A, Stefan S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Haynes KJ, Cronin JT (2006) Interpatch movement and edge effects: the role of behavioral responses to the landscape matrix. Oikos 113:43–54

    Article  Google Scholar 

  • Hoffman RL (1999) Checklist of the millipeds of North and Middle America. Virginia Museum of Natural History Special Publication 8, Virginia

  • Hoffman RL, Golovatch SI, Adis J, De Morais JW (1996) Practical keys to the orders and families millipedes of the Neotropical region (Myriapoda: Diplopoda). Amazoniana 14:1–35

    Google Scholar 

  • Holling CS (1992) Cross-scale morphology, geometry and dynamics of ecosystems. Ecol Monogr 62:447–502

    Article  Google Scholar 

  • Hopkin SP, Read HJ (1992) The biology of Millipedes. Oxford Universty Press, Oxford

    Google Scholar 

  • Johnson AR, Wiens JA, Milne BT, Crist TO (1992) Animal movements and population dynamics in heterogeneous landscapes. Landsc Ecol 7:63–75

    Article  Google Scholar 

  • Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Article  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Lugo AE (1988) Estimating reductions in the diversity of tropical forest species. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington

    Google Scholar 

  • Lugo AE (2006) Conservación de recursos. In: López TM, Marrero NV (eds) Atlas Ambiental de Puerto Rico. La Editorial Universidad de Puerto Rico, San Juan, Puerto Rico

    Google Scholar 

  • Mather PM (1976) Computational methods of multivariate analysis in physical geography. Wiley, London

    Google Scholar 

  • Mathieu J, Rossi J-P, Mora P, Lavelle P, Martins PF, Rouland C, Grimaldi M (2005) Recovery of soil macrofauna communities after forest clearance in eastern Amazonia, Brasil. Conserv Biol 19:1598–1605

    Article  Google Scholar 

  • McCloskey M (1993) Note on the fragmentation of primary rainforest. Ambio 22:250–251

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  • McCune B, Mefford MJ (1997) PC-ORD v 3.18. MjM Software, Gleneden Beach, Oregon

    Google Scholar 

  • Mech SG, Hallett JG (2001) Evaluating the effectiveness of corridors: a genetic approach. Conserv Biol 15:467–474

    Article  Google Scholar 

  • Murphy HT, Lovett-Doust J (2004) Context and connectivity in plant metapopulations and landscape mosaics: does the matrix matter? Oikos 105:3–14

    Article  Google Scholar 

  • Nakamura A, Proctor H, Catterall CP (2003) Using soil and litter arthropods to assess the state of rainforest restoration. Ecol Manag Restor 4S:20–28

    Article  Google Scholar 

  • O’Neill RV, Turner SJ, Cullinan VI, Coffin DP, Cook T, Conley W, Brunt J, Thomas JM, Conley MR, Gosz J (1991) Multiple landscape scales: an intersite comparison. Landsc Ecol 5:137–144

    Article  Google Scholar 

  • Patton DR (1975) A diversity index for quantifying habitat edge. Wildl Soc B 394:171–173

    Google Scholar 

  • Pfeiffer WJ (1996) Litter invertebrates. In: Reagan DP, Waide RB (eds) The food web of a tropical rain forest. University of Chicago Press, Chicago

    Google Scholar 

  • Raven H, Wilson EO (1992) A fifty-year plan for biodiversity surveys. Science 258:1099–1100

    Article  PubMed  CAS  Google Scholar 

  • Redi BH, van Aarde RJ, Wassenaar TD (2005) Coastal dune forest development and the regeneration of millipede communities. Restor Ecol 13:284–291

    Article  Google Scholar 

  • Rittenhouse TAG, Semlitsch RD (2006) Grasslands as movement barriers for a forest-associated salamander: Migration behavior of adult and juvenile salamanders at a distinct habitat edge. Biol Conserv 131:14–22

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Santiago-Blay JA, Vélez MJ Jr (1980) Nota sobre una posible nueva especie y un nuevo récord de diplópodos (Polydesmida, Paradoxosomatidae) de Puerto Rico. Science-Ciencia. Boletín Científico del Sur 7:54–55

    Google Scholar 

  • Santiago-Blay JA, Vélez MJ Jr (1985) Chondromorpha xanthotricha: a new record of polydesmid millipede (Diplopoda: Paradoxosomatidae) and the geographical distribution of the three known paradoxosomatids of Puerto Rico. Carib J Sci 21:137–141

    Google Scholar 

  • Schweiger O, Maelfait JP, Van Wingerden W, Hendrickx F, Billeter R, Speelmans M, Augenstein I, Aukema B, Aviron S, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Frenzel M, Herzog F, Liira J, Roubalova M, Bugter R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129–1139

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Stork NE, Coddington JA, Colwell RK, Chazdon RL, Dick CW, Peres CA, Sloan S, Willis K (2009) Vulnerability and resilience of tropical forest species to land-use change. Conserv Biol 23:1438–1447

    Article  PubMed  Google Scholar 

  • Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscape. Proc Natl Acad Sci USA 99:12923–12962

    Article  PubMed  CAS  Google Scholar 

  • Thomlinson JR, Serrano MI, López TM, Aide TM, Zimmerman JK (1996) Land-use dynamics in a post-agricultural Puerto Rican landscape (1936–1988). Biotropica 28:525–536

    Article  Google Scholar 

  • Turner IM, Corlett RT (1996) The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol Evol 11:330–333

    Article  PubMed  CAS  Google Scholar 

  • Vélez MJ Jr (1966) New records of Puerto Rican diplopods, with notes on their geographic distribution. Stahlia 8:1–11

    Google Scholar 

  • Vélez MJ Jr (1967) New species of Diplopoda from Puerto Rico with notes on their geographical distribution and ecology. Carib J Sci 7:23–35

    Google Scholar 

  • Vélez MJ Jr (2011, in press) Biodiversidad de Puerto Rico: invertebrados. In: Joglar R (ed) Proyecto Coquí, San Juan Puerto Rico

  • Whitcomb RF, Robbins CS, Lynch JF, Whitcomb BL, Klimkiewicz MK, Bystrak D (1981) Effects of forest fragmentation on avifauna of the eastern deciduous forest. In: Burgess RL, Sharpe DM (eds) Forest island dynamics in man-dominated landscapes. Springer, New York

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • With KA (1994) Using fractal analysis to assess how species perceive landscape structure. Landsc Ecol 9:25–36

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mitchell Aide, Nicholas Brokaw, and Eugenio Santiago for assisting with their advice and expertise, and Jess Zimmerman for his valuable help with the data analyses. We also thank two anonymous referees for their reviews that greatly improved this article. Special thanks are extended to Manuel Vélez for his assistance in the identification of the millipede species. We are very grateful to the many undergraduate students from the College of Natural Sciences of the University of Puerto Rico who made possible this investigation, especially to Lizbell Febres who became an expert in the identification of millipedes. We also thank Edwin T. Pérez for his help with the graphic art of figures and Jorge Santiago-Blay for his valuable help with information of the millipede species. Our gratitude also goes to the Puerto Rico Louis Stokes Alliance for Minority Participation for providing part of the funds for this research, and to the Institute for Tropical Ecosystem Studies for providing the facilities and the support of their personnel. This research was supported by grants DEB 0080538 and DEB 0218039 from NSF to the Institute for Tropical Ecosystem Studies, University of Puerto Rico, and to the International Institute of Tropical Forestry USDA Forest Service, as part of the Long-Term Ecological Research Program in the Luquillo Experimental Forest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana T. Galanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galanes, I.T., Thomlinson, J.R. Soil millipede diversity in tropical forest patches and its relation to landscape structure in northeastern Puerto Rico. Biodivers Conserv 20, 2967–2980 (2011). https://doi.org/10.1007/s10531-011-0128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0128-7

Keywords

Navigation