Biodiversity and Conservation

, Volume 20, Issue 7, pp 1483–1499 | Cite as

Developing conservation strategies for endemic tree species when faced with time and data constraints: Boswellia spp. on Socotra (Yemen)

  • Fabio Attorre
  • Nadim Taleb
  • Michele De Sanctis
  • Alessio Farcomeni
  • Alfredo Guillet
  • Marcello Vitale
Original Paper

Abstract

Many endemic tree species have important scientific, ecological and economic value but the scarcity of information about their biological and ecological features makes it difficult to develop conservation strategies for them. A four-step approach is presented to address this problem, based on the analysis of data collected in a limited-duration field study: (1) Data collected are used to analyse the ecological niche, population structure and regeneration status of the species in question. (2) Several IUCN Red List (RL) parameters, useful for assessing the species’ risk of extinction, are measured, including population counts, number of locations, extent and area of occurrence. (3) The IUCN RL parameters are used together with the other information gathered to set preliminary conservation priorities. (4) The analysis of utilization pattern is used to develop conservation actions specific to the environmental and socio-economic context. To test the applicability of this approach Boswellia spp. of Socotra island were analysed. Ground-rooted species (B. ameero, B. elongata and B. socotrana) were the most abundant and widespread and, according to the spatial analysis, were characterised by a geo-altitudinal zonation. However, the Weibull functions fitted on their stem diameters, and the absence or presence of only a small number of saplings highlighted a poor regeneration status. In the absence of conservation actions, these species will probably be subject to a progressive decline because of uncontrolled grazing. Of the four cliff-rooted species, which grow in sites that are less accessible to livestock, two (B. popoviana and B. dioscorides) were of lower conservation priority and may become the most numerically abundant. Conversely, the other two (B. nana and B. bullata), which may be threatened by stochastic events because of their reduced populations and small number of locations, were considered of very high priority. Different conservation actions were then identified for each species. In particular, for Boswellia species producing gum, the conservation-through-use action was discussed as a potential option.

Keywords

IUCN Red List Ecological niche modelling Random Forest Soil parameters Weibull function 

References

  1. Adolt R, Pavlis J (2004) Age structure and growth of Dracaena cinnabari populations on Socotra. Trees Struct Funct 18(1):43–53CrossRefGoogle Scholar
  2. Attorre F, Francesconi F, De Sanctis M, Alfo M, Bruno F (2007a) Comparison of different methods for the production of climatic and bioclimatic maps at regional scale. Int J Clim 27(13):1825–1843. doi:10.1002/joc.1495 CrossRefGoogle Scholar
  3. Attorre F, Francesconi F, Taleb N et al (2007b) Will dragonblood survive the next period of climate change? Current and future potential distribution of Dracaena cinnabari (Socotra, Yemen). Biol Conserv 138:430–439. doi:10.1016/j.biocon.2007.05.009 CrossRefGoogle Scholar
  4. Bailey RL, Dell TR (1973) Quantifying diameter distributions with the Weibull function. For Sci 19:97–104Google Scholar
  5. Benito Garzòn M, Blazek R, Neteler M et al (2006) Machine learning models for predicting species habitat distribution suitability: an example with Pinus sylvestris L. for the Iberian Peninsula. Ecol Model 197:383–393. doi:10.3170/2008-7-18348 CrossRefGoogle Scholar
  6. Beydoun ZR, Bichan HR (1970) The geology of Socotra Island, Gulf of Aden. Q J Geol Soc Lond 125:413–446CrossRefGoogle Scholar
  7. Burgman MA, Fox JC (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv 6:19–28CrossRefGoogle Scholar
  8. de Grammont PC, Cuaron AD (2006) An evaluation of threatened species categorization systems used on the American continent. Conserv Biol 20:14–27. doi:10.1111/j.1523-1739.2006.00352.x PubMedCrossRefGoogle Scholar
  9. Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274. doi:10.1111/j.0021-8901.2004.00881.x CrossRefGoogle Scholar
  10. Gebrehiwot K, Muys B, Haile M, Mitloehner R (2003) Introducing Boswellia papyrifera (Del.) Hochst and its non-timber forest product, frankincense. Int For Rev 5:348–353Google Scholar
  11. Gillet JB (1991) Burseraceae. In: Polhill RM (ed) Flora of tropical east Africa. Balkema Publ. Rotterdam, The Netherlands, p 94Google Scholar
  12. Habrova H, Cermak Z, Pavlis J (2009) Dragon’s blood tree—threatened by overmaturity, not by extinction: dynamics of a Dracaena cinnabari woodland in the mountains of Soqotra. Biol Conserv 42:772–778. doi:10.1016/j.biocon.2008.12.022 CrossRefGoogle Scholar
  13. Hirzel A, Hausser HJ, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036CrossRefGoogle Scholar
  14. IUCN (2010) Guidelines for Using the IUCN Red List Categories and Criteria. Version. Prepared by the Standards and Petitions Subcommittee in March 2010. Downloadable from http://intranet.iucn.org/webfiles/doc/SSC/RedList/RedListGuidelines.pdf
  15. Kamziah AK, Ahmad MI, Ahmad Zuhaidi Y (2000) Modelling diameter distribution in even-aged and uneven-aged forest stands. J Trop For Sci 12(4):669–681Google Scholar
  16. Lughadha EN, Baillie J, Barthlott W et al (2005) Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action. Phil Trans Royal Soc 360:359–372. doi:10.1098/rstb.2004.1596 CrossRefGoogle Scholar
  17. Lykke AM (1998) Assessment of species composition change in savannah vegetation by means of woody plants’ size class distributions and local information. Biodivers Conserv 7:1261–1275CrossRefGoogle Scholar
  18. Mace GM, Collar NJ, Gaston KJ et al (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22(6):1424–1442. doi:10.1111/j.1523-1739.2008.01044.x PubMedCrossRefGoogle Scholar
  19. Mies AB, Lavranos J, James JG (2000) Frankincense on Soqotra Island (Boswellia, Burseraceae; Yemen). Cactus Succ J 72(5):265–277Google Scholar
  20. Miller A (2004) Boswellia ameero, B. bullata, B. dioscorides, B. elongata, B. nana, B. popoviana, B. socotrana. In: IUCN 2010. IUCN Red List of Threatened Species. Version 2010.1. <www.iucnredlist.org>. Downloaded on 19 March 2010
  21. Miller A, Morris M (2004) Ethnoflora of the Sqotra archipelago. The Royal Botanic Garden Edinburgh, UKGoogle Scholar
  22. MIPAAF (2000) Metodi ufficiali d’analisi chimica del suolo. Ministero delle Risorse Agricole Alimentari e Forestali. Franco Angeli, Milano, ItalyGoogle Scholar
  23. Negussie A, Aertsb R, Gebrehiwota K, Muysb B (2008) Seedling mortality causes recruitment limitation of Boswellia papyrifera in northern Ethiopia. J Arid Environ 72:378–383. doi:10.1016/j.jaridenv.2007.06.009 CrossRefGoogle Scholar
  24. Newton AC (2008) Conservation of tree species through sustainable use: how can it be achieved in practice? Oryx 42(2):195–205. doi:10.1017/S003060530800759X CrossRefGoogle Scholar
  25. Newton AC, Oldfield S (2008) Red listing the world’s tree species: a review of recent progress. Endang Species Res 6:137–147. doi:10.3354/esr00148 CrossRefGoogle Scholar
  26. Ogbazghi W, Bongers F, Rijkers T, Wessel M (2006a) Population structure and morphology of the frankincense tree Boswellia papyrifera along an altitude gradient in Eritrea. J Drylands 1(1):85–94Google Scholar
  27. Ogbazghi W, Rijkers T, Wessel M, Bongers F (2006b) Distribution of the frankincense tree Boswellia papyrifera in Eritrea: the role of environment and land use. J Biogeogr 33:524–535. doi:10.1111/j.1365-2699.2005.01407.x CrossRefGoogle Scholar
  28. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199. doi:10.1007/s10021-005-0054-1 CrossRefGoogle Scholar
  29. Rijkers T, Ogbazghi W, Wessel M, Bongers F (2006) The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J Appl Ecol 43:1188–1195. doi:10.1111/j.1365-2664.2006.01215.x CrossRefGoogle Scholar
  30. Rivers MC, Bachman SP, Meagher TR, Lughadha EN, Brummitt NA (2010) Subpopulations, locations and fragmentation: applying IUCN red list criteria to herbarium specimen data. Biodiver Conserv 19(7):2071–2085. doi:10.1007/s10531-010-9826-9 CrossRefGoogle Scholar
  31. Scarnati L, Farcomeni A, Attorre F et al (2009) Modelling the spatial distribution of tree species with fragmented populations from abundance data. Commun Ecol 10(2):215–224. doi:10.1556/ComEc.10.2009.2.12 CrossRefGoogle Scholar
  32. Scholte P, De Geest P (2010) The climate of Socotra Island (Yemen): a first-time assessment of the timing of the monsoon wind reversal and its influence on precipitation and vegetation patterns. J Arid Environ 74(11):1507–1515. doi:10.1016/j.jaridenv.2010.05.017 CrossRefGoogle Scholar
  33. Scholte P, Miller A, Shamsan AR et al (2008) Goats: part of the problem or the solution to biodiversity conservation on Socotra? Report to UNESCO-IUCN to Support Socotra’s Listing as World Heritage SiteGoogle Scholar
  34. Sérgio C, Figueira R, Draper D et al (2007) Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biol Conserv 135:341–351. doi:10.1016/j.biocon.2006.10.018 CrossRefGoogle Scholar
  35. Swaine AM (1998) Assessment of species composition change in savannah vegetation by means of woody plants’ size class distribution and local information. Biodiver Conserv 7:1261–1275CrossRefGoogle Scholar
  36. Tanouchi H, Yamamoto S (1995) Structure and regeneration of canopy species in an old-growth evergreen broad-leaved forest in Aya district, south-western Japan. Vegetatio 117:51–60CrossRefGoogle Scholar
  37. Thulin M, Al-Gifri A (1998) The frankincense tree (Boswellia spp.) of Socotra. In: Dumont HJ (ed) Socotra—Proceedings of the first international symposium on Socotra Island: present and future. UNDP, NY, pp 107–113Google Scholar
  38. Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16:330–343. doi:10.1016/S0169-5347(01)02177-2 PubMedCrossRefGoogle Scholar
  39. Vollesen K (1989) Burseraceae. In: Hedberg I, Edwards S (eds) Flora of Ethiopia, vol 3. National Herbarium, Uppsala University, Uppsala, Sweden, pp 442–478Google Scholar
  40. Zhang LJ, Liu CM (2006) Fitting irregular diameter distributions of forest stands by Weibull, Modified Weibull, and Mixture Weibull models. J For Res 11:369–372. doi:10.1007/s10310-006-0218-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Fabio Attorre
    • 1
  • Nadim Taleb
    • 2
  • Michele De Sanctis
    • 1
  • Alessio Farcomeni
    • 3
  • Alfredo Guillet
    • 4
  • Marcello Vitale
    • 1
  1. 1.Environmental Biology Department, SapienzaUniversity of RomeRomeItaly
  2. 2.Socotra Governance & Biodiversity ProjectSana’aYemen
  3. 3.Department of Experimental Medicine – Statistics UnitSapienza University of RomeRomeItaly
  4. 4.Central Technical UnitDGCS, Italian Ministry of Foreign AffairsRomeItaly

Personalised recommendations