Biodiversity and Conservation

, Volume 20, Issue 5, pp 1125–1132 | Cite as

American bullfrog invasion in Argentina: where should we take urgent measures?

  • Javier Nori
  • Mauricio S. Akmentins
  • Romina Ghirardi
  • Nicolás Frutos
  • Gerardo C. Leynaud
Brief Communication

Abstract

Argentina is the country with the most geographically extended biological invasion of the American bullfrog (Lithobates catesbeianus) in South America after Brazil. Here, we used a maximum entropy ecological niche modeling algorithm (using records of the native range of American bullfrog) to project the model onto the whole of Argentina. We determined the most suitable habitats for this invasive alien species and where we consider urgent measures should be taken. Our projections showed good agreement with known feral populations of American bullfrog in Argentina. By implementing the “Multivariate Environmental Similarity Surface” analysis, we be able to determine that factors such as low precipitations or highest altitudes could be limiting the species’ ability to invade the west and south of the country. We suggest that strategies should focus on detecting established feral populations of the American bullfrog and preventing further introductions or range expansion of feral populations in the northeast portion of the country. Lastly, we report a new feral population of bullfrogs in Argentina.

Keywords

Argentina Ecological modeling Invasion Lithobates catesbeianus MAXENT Multivariate Environmental Similarity Surface 

References

  1. Adams MJ, Pearl CA (2007) Problems and opportunities managing invasive bullfrogs. Is there any hope? In: Gherardi F (ed) Biological invaders in inland waters—profiles, distribution and threats. Springer, Dordrecht, pp 679–693CrossRefGoogle Scholar
  2. Akmentins MS, Cardozo DE (2010) American bullfrog Lithobates catesbeianus (Shaw, 1802) invasion in Argentina. Biol Invasions 12:735–737CrossRefGoogle Scholar
  3. Akmentins MS, Pereyra LC, Lescano JN (2009) Primer registro de una población asilvestrada de rana toro (Lithobates catesbeianus) en la provincia de Córdoba, Argentina. Notas sobre la biología de la especie. Cuad Herpetol 23:25–32Google Scholar
  4. Barrasso DA, Cajade R, Nenda SJ, Baloriani G, Herrera R (2009) Introduction of the American bullfrog Lithobates catesbeianus (Anura: Ranidae) in natural and modified environments: an increasing conservation problem in Argentina. S Am J Herpetol 4:69–75CrossRefGoogle Scholar
  5. Bomford M, Kraus F, Barry SC, Lawrence E (2009) Predicting establishment success for alien reptiles and amphibians: a role for climate matching. Biol Invasions 11:713–724CrossRefGoogle Scholar
  6. Cei JM (1980) Amphibians of Argentina. Monitore Zoologica Italiano, New Series Monografia, FirenzeGoogle Scholar
  7. Clarkson RW, De Vos JC Jr (1986) The bullfrog, Rana catesbeiana Shaw, in lower Colorado river, Arizona-California. J Herpetol 20:42–49CrossRefGoogle Scholar
  8. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342CrossRefGoogle Scholar
  9. Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–485CrossRefGoogle Scholar
  10. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  11. GBIF—Global Biodiversity Information Facility (2007) Free and open access to biodiversity data. http://www.gbif.org/. Cited Sept 2010
  12. Giovanelli JGR, Haddad CFB, Alexandrino J (2008) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol Invasions 10:585–590CrossRefGoogle Scholar
  13. Hanselmann R, Rodriguez A, Lampo M, Fajardo-Ramos L, Aguirre AA, Kilpatrick AM, Rodriguez JP, Daszak P (2004) Presence of an emerging pathogen of amphibians in introduced bullfrogs (Rana catesbeiana) in Venezuela. Biol Conserv 120:115–119CrossRefGoogle Scholar
  14. Herpnet (2010) Specimens searching portal. http://www.herpnet.org/. Cited Sept 2010
  15. Hijmans RJ, Guarino L, Rojas E (2002) DIVA-GIS. A geographic information system for the analysis of biodiversity data. Manual-International Potato Center, LimaGoogle Scholar
  16. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  17. IABIN (2010) Red Interamericana de Información sobre Biodiversidad: Red de Información sobre Especies Invasoras. http://www.inbiar.paradigma.com.ar/ver_ocurrencias_localidades.asp?id_especie=465. Cited 10 Oct 2010
  18. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  19. Kupferberg SJ (1997) Bullfrog (Rana catesbeiana) invasion of a California river: the role of larval competition. Ecology 78:1736–1751Google Scholar
  20. Luchini L (1995) Situación de la ranicultura en la República Argentina. Technofrog 95:3–14Google Scholar
  21. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931CrossRefGoogle Scholar
  22. Mazzoni R, Cunningham AA, Daszak P, Apolo A, Perdomo E, Speranza G (2003) Emerging pathogen of amphibians in frogs (Rana catesbeiana) farmed for international trade. Emerg Infec Dis 9:995–998Google Scholar
  23. Pereyra MO, Baldo D, Krauczuc ER (2006) La ‘‘rana toro’’ en la Selva Atlántica Interior Argentina: un nuevo problema de conservación. Cuad Herpetol 20:37–40Google Scholar
  24. Peterson AT (2001) Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599–605CrossRefGoogle Scholar
  25. Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433PubMedCrossRefGoogle Scholar
  26. Phillips SJ, Anderson PR, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  27. Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TW, Veith M, Walker SF, Fisher MC, Lötters S (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52–65CrossRefGoogle Scholar
  28. Ron SR (2005) Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the New World. Biotropica 37:209–221CrossRefGoogle Scholar
  29. Sanabria EA, Quiroga LB, Acosta J (2005) Introducción de la Rana catesbeiana (Rana toro) en ambientes Pre-cordilleranos de la Provincia de San Juan, Argentina. Multequina 14:65–68Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Javier Nori
    • 1
    • 2
  • Mauricio S. Akmentins
    • 3
    • 4
    • 5
  • Romina Ghirardi
    • 3
    • 6
  • Nicolás Frutos
    • 3
    • 7
  • Gerardo C. Leynaud
    • 1
  1. 1.Laboratorio de Herpetología y Animales Venenosos, Centro de Zoología Aplicada, Facultad de Ciencias ExactasFísicas y Naturales, Universidad Nacional de Córdoba, Rondeau 798CordobaArgentina
  2. 2.Museo Patagónico de Ciencias NaturalesGeneral RocaArgentina
  3. 3.CONICETBuenos AiresArgentina
  4. 4.Centro de Investigaciones Básicas y Aplicadas (CIBA)Universidad Nacional de JujuyS. S. JujuyArgentina
  5. 5.Instituto de Bio y Geociencias del NOA (IBIGEO)Universidad Nacional de SaltaSaltaArgentina
  6. 6.Instituto Nacional de Limnología (CONICET_UNL)Ciudad UniversitariaSanta FeArgentina
  7. 7.Instituto de Altos Estudios Espaciales Mario Gulich, Comisión Nacional de Actividades Espaciales (CONAE)Universidad Nacional de Córdoba (UNC)CordobaArgentina

Personalised recommendations