Skip to main content

Advertisement

Log in

LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Management strategies for the conservation of biodiversity can be developed only with precise information on the spatial distribution of organisms on relevant, mostly regional, spatial scales. Current surrogates for approximating the distribution of biodiversity are habitats mapped within a number of national and international frameworks (e.g., Natura 2000), even though conventional habitat mapping is time consuming and requires well-trained personnel. Here we evaluated the use of light detection and ranging (LiDAR) to map forest habitat types to simplify the process. We used available data of habitat types for the Bavarian Forest National Park as a basis to predict habitat types with LiDAR-derived variables. Furthermore, we compared these results with predictions based on extensive ground-based climate, soil and vegetation data. Using linear and flexible discriminant analyses, we found that LiDAR is able to predict forest habitat types with the same overall accuracy as the extensive ground data for climate, soil and vegetation composition. Subtle differences in the vegetation structure between habitat types, particularly in the vertical and horizontal vegetation profiles, were captured by LiDAR. These differences in the physiognomy were in part caused by changes in altitude, which also influence tree species composition. We propose that the most-efficient way to identify forest habitat types according Natura 2000 is to combine remote-sensing LiDAR data with well-directed field surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN-Models. ISPRS J Photogramm 33:110–117

    Google Scholar 

  • Balmford A, Bennun L, ten Brink B et al (2005) The convention in biological diversity’s 2010. Target Sci 14:212–213

    Google Scholar 

  • Bässler C (2004) Das Klima im Nationalpark Bayerischer Wald – Darstellung, Entwicklung und Auswirkung Nationalparkverwaltung Bayerischer Wald. Grafenau, Germany

    Google Scholar 

  • Bässler C, Förster B, Moning C et al (2008) The BIOKLIM-Project: biodiversity research between climate change and wilding in a temperate montane forest—the conceptual framework. For Ecol Landsc Res Nat Conserv 7:21–33

    Google Scholar 

  • Bässler C, Müller J, Hothorn T et al (2010) Estimation of the extinction risk for high- montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecol Indic 10:341–352

    Article  Google Scholar 

  • Bater CW, Coops NC, Gergel SE et al (2009) Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing. Can J For Res 39:1080–1091

    Article  Google Scholar 

  • Becker A, Klöcking B, Lahmer W et al (2002) The hydrological modeling system ArcEGMO. In Singh VP, Frevert DK (eds) Mathematical models of large watershed hydrology. Water Resources Publikations Littleton, Colorado, pp 321–384

  • Bergen KM, Goetz SJ, Dubayah RO et al (2009) Remote sensing of vegetation 3-D structure for biodiversity and habitat: review and implications for lidar and radar spaceborne missions. J Geophys Res 114:G00E06

    Article  Google Scholar 

  • Bibby CJ, Collar MJ, Crosby MF et al (1992) Putting biodiversity on the map: priority areas for global conservation, International Council for Bird Preservation, Girton, Cambridge, 90 pp

  • Böhner J, McCloy KR, Strobl J (2006) SAGA—analysis and modelling applications. Göttinger Geographische Abhandlungen 115:1–130

    Google Scholar 

  • Collin A, Long B, Archambault P (2010) Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength LiDAR. Remote Sens Environ 114:520–530

    Article  Google Scholar 

  • Currie DJ (2007) Regional-to global patterns of biodiversity, and what they have to say about mechanisms. In: Storch D, Marquet PA, Brown JH (eds) Scaling biodiversity. Cambridge University Press, Cambridge, pp 258–282

    Google Scholar 

  • European Commission (2000) Managing Natura 2000 sites. The provisions of Article 6 of the Habitats Directive 92/43/EEC

  • European Commission (2009) Natura 2000 Barometer Natura 2000 Newsletter 23, Environment Directorate General (DG ENV) of the European Commission

  • Ewald J, Reuther M, Nechwatal J et al (2000) Monitoring von Schäden in Waldökosystemen des bayerischen Alpenraumes Umwelt und Entwicklung Bayern Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen. Materialien 155:3–243

    Google Scholar 

  • Falkowski MJ, Evans JS, Martinuzzi S et al (2009) Characterizing forest succession with lidar data: an evaluation for the Inland Northwest. USA Remote Sens Environ 113:946–956

    Article  Google Scholar 

  • Fukunaga K, Hummels DM (1989) Leave-one-out procedures for nonparametric error estimates. IEEE Trans Pattern Anal Mach Intell 2:421–423

    Article  Google Scholar 

  • Hall RK, Watkins RL, Heggem DT et al (2009) Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery. Environ Monit Assess 159:63–83

    Article  PubMed  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Google Scholar 

  • Hinsley SA, Hill RA, Bellamy PE et al (2006) The application of lidar in woodland bird ecology: climate, canopy structure, and habitat quality. Photogramm Eng Remote Sens 72:1399–1406

    Google Scholar 

  • Hudson WD, Ramm CW (1987) Correct formulation of the kappa coefficient of agreement. Photogramm Eng Remote Sens 53:421–422

    Google Scholar 

  • Kati V, Devillers P, Dufrêne M et al (2004) Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conserv Biol 18:667–675

    Article  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Korpela I, Koskinen M, Vasander H et al (2009) Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats. Forest Ecol Manag 258:1549–1566

    Article  Google Scholar 

  • Li Y, Andersen HE, McGaughey R (2008) A comparison of statistical methods for estimating forest biomass from light detection and ranging data. West J Appl For 23:223–231

    Google Scholar 

  • Lohberger E, Leitl R, Hofmeister J et al (2008) Natura 2000 Managementplan im Nationalpark Bayerischer Wald, Nationalparkverwaltung Grafenau

  • Londo G (1976) The decimal scale for releves of permanent quadrats. Vegetatio 33:1–64

    Article  Google Scholar 

  • Luehr B, Böhmer A (2000) Comparison between percolation and extraction with 1 M NH4Cl solution to determine the effective cation exchange capacity (CECeff) of soils. J Plant Nutr 163:555–557

    Article  Google Scholar 

  • Magnussen S, Næsset E, Gobakken T (2010) Reliability of LiDAR derived predictors of forest inventory attributes: A case study with Norway spruce. Remote Sens Environ 114:700–712

    Article  Google Scholar 

  • Maiorano L, Falcucci A, Garton EO et al (2007) Contribution of the Natura 2000 network to biodiversity conservation in Italy. Conserv Biol 21:1433–1444

    Article  PubMed  Google Scholar 

  • Miura N, Jones SD (2010) Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens Environ 114:1069–1076

    Article  Google Scholar 

  • Müller J, Brandl R (2009) Assessing biodiversity by remote sensing in mountainous terrain: the potential for LiDAR to predict forest beetle assemblages. J Appl Ecol 46:897–905

    Article  Google Scholar 

  • Müller J, Moning C, Bässler C et al (2009) Using airborne laser scanning to model potential abundance and assemblages of forest passerines. Basic Appl Ecol 10:671–681

    Article  Google Scholar 

  • Müller J, Vierling K, Bässler C et al (in press) Spinning a laser web: predicting spider distributions using lidar. doi:10.1890/09-2155.1

  • Næsset E (2009) Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 113:148–159

    Article  Google Scholar 

  • Næsset E, Gobakken T, Holmgren J et al (2004) Laser scanning of forest resources: the Nordic experience. Can J For Res 19:482–499

    Google Scholar 

  • Ojeda RA, Stadler J, Brandl R (2003) Diversity of mammals in the tropical-temperate Neotropics: hotspots on a regional scale. Biodivers Conserv 12:1431–1444

    Article  Google Scholar 

  • Pesonen A, Maltamo M, Eerikainen K et al (2008) Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area. For Ecol Manag 255:3288–3296

    Article  Google Scholar 

  • Pringle RM, Webb JK, Shine R et al (2003) Canopy structure, microclimate, and habitat selection by a nocturnal snake, Hoplocephalus bungaroides. Ecology 84:2668–2679

    Article  Google Scholar 

  • Quian H, Ricklefs RE (2008) Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecol Lett 11:547–553

    Article  Google Scholar 

  • Rahbeck C, Graves GR (2001) Multiscale assessment of patterns of avian species Richness. Proc Natl Acad Sci USA 98:4534–4539

    Article  Google Scholar 

  • Reutebuch SE, Andersen H-E, Gaughey RJ (2005) Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. J For 103:286–292

    Google Scholar 

  • Ricklefs RE (2003) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15

    Article  Google Scholar 

  • Schweiger O, Settele J, Kudrna O et al (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472–3479

    Article  PubMed  Google Scholar 

  • Standortskartierung, A (1996) Forstliche Standortsaufnahme, 5 Auflage, Eching bei München

  • Story M, Congalton RG (1986) Accuracy assessment: a users’s perspective. Photogramm Eng Remote Sens 52:397–399

    Google Scholar 

  • Vehmas M, Eerikäinen K, Peuhkurinen J et al (2009) Identification of boreal forest stands with high herbaceous plant diversity using airborne laser scanning. For Ecol Manag 257:46–53

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • Vierling KT, Vierling LA, Gould WA et al (2008) Lidar: shedding new light on habitat characterization and modelling. Front Ecol Environ 6:90–98

    Article  Google Scholar 

  • Walentowski H, Ewald J, Fischer A et al (2004) Handbuch der natürlichen Waldgesellschaften in Bayern Geobotanica, Freising

  • Zimblea DA, Evans DL, Carlson GC et al (2003) Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens Environ 87:171–182

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Bavarian State Ministry of the Environment, Public Health and Consumer Protection. We are grateful to Ernst Lohberger for mapping the habitat types in the Bavarian Forest National Park, the fundamental basis for our study, and to Karen A. Brune for linguistic revision of the manuscript. All images were taken by Ernst Lohberger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Bässler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bässler, C., Stadler, J., Müller, J. et al. LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks. Biodivers Conserv 20, 465–481 (2011). https://doi.org/10.1007/s10531-010-9959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-010-9959-x

Keywords

Navigation