Skip to main content

The use of diachronic spatial approaches and predictive modelling to study the vegetation dynamics of a managed heathland

Abstract

According to the EU Habitats Directive, heathlands are a semi-natural habitat type of community interest. This status aims at conserving these habitats, especially where and when they are threatened by various changes, including natural vegetation succession. We present results of a study of the dynamics of a typical dry heathland plot located in the Fontainebleau massif (France). An exhaustive observation of vegetation changes were made on this area of four hectares between 2000 and 2008, employing a spatial approach. We recorded the expansion of Molinia caerulea (L.) Moench at the expense of Ericaceae. The potential future vegetation of the site was modelled using Markov chains coupled to a GIS programme. This model predicted a gradual change in the floristic composition of heathland in favour of M. caerulea at the expense of Calluna vulgaris (L.) Hull and Erica tetralix L., and the expansion of Pinus sylvestris L. The study demonstrates how spatial methods can contribute to the design of reliable management methods of habitats such as the heathlands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aerts R (1989) Above ground biomass and nutrient dynamics of Calluna vulgaris and Molinia caerulea in a dry heathland. Oikos 56:31–38

    Article  CAS  Google Scholar 

  • Aerts R, Berendse F (1988) The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio 76:63–69

    Google Scholar 

  • Aerts R, Bobbink R (1999) The impact of atmospheric nitrogen deposition on vegetation processes in terrestrial, nonforest ecosystems. In: Langan SJ (ed) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer Academic Publishers, Dordrecht, pp 85–122

    Google Scholar 

  • Aerts R, Ludwig F (1997) Water table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem 29:1691–1698

    Article  CAS  Google Scholar 

  • Aspinall RJ, Pearson DM (1996) Data quality and spatial analysis: analytical use of GIS for ecological modeling. In: Goodchild MF, Steyaert LT, Parks BO (eds) GIS and Environmental modeling: progress and research issues. GIS World Books, Fort Collins (Colo), pp 35–39

    Google Scholar 

  • Balzter H (2000) Markov chain modelling for vegetation dynamics. Ecol Model 126:139–154

    Article  Google Scholar 

  • Berendse F, Schmitz M, De Visser W (1994) Experimental manipulation of succession in heathland ecosystems. Oecologia 100:38–44

    Article  Google Scholar 

  • Braun-Blanquet J (1932) Plant sociology. McGraw-Hill Book Company, New York

    Google Scholar 

  • Bridgewater PB (1993) Landscape ecology, geographic information systems and nature conservation. In: Haines-Young R, Green DR, Cousins S (eds) Landscape ecology and GIS. Taylor and Francis, London, pp 23–36

    Google Scholar 

  • Britton AJ, Pakeman RJ, Carey PD, Marrs RH (2001) Impact of climate, management and nitrogen deposition on the dynamics of lowland heathland. J Veg Sci 12:797–806

    Article  Google Scholar 

  • Bureau de Recherches Géologiques et Minières (BRGM) (1970) Carte géologique de la France, Fontainebleau 1/50000, BRGM direction du service géologique et des laboratoires, Orléans

  • Clark University (1987–2006) IDRISI [logiciel]. Version Andes 32 Clark University Production©, Worcester

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Eastman JR (2006) IDRISI Andes guide to GIS and image processing. Clark Labs Clark University, Worcester

    Google Scholar 

  • EC Habitats Directive, 1992 Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Brussels, Belgium

  • Environmental Systems Research Institute (2006a) ArcGis [logiciel]. Version 9.2. Environmental Systems Research Institute Inc., Redlands

    Google Scholar 

  • Environmental Systems Research Institute (2006b) What is ArcGIS 9.2? ESRI, Redlands

    Google Scholar 

  • Gimingham CH (1972) Ecology of heathlands. Chapman and Hall, London, 266 p

  • Glenn-Lewin DC, Peet RK, Veblen TT (1992) Plant succession: theory and prediction. Chapman and Hall, London

    Google Scholar 

  • Grant SA, Maxwell TJ (1988) Hill vegetation and grazing by domesticated herbivores: the biology and definition of management options. In: Usher MJB, Thompson DBA (eds) Ecological change in the Uplands. Blackwell Scientific Publications, Oxford, pp 201–214

    Google Scholar 

  • Heil GW, Bruggink M (1987) Competition for nutrients between Calluna vulgaris (L.) Hull and Molinia caerulea (L.). Oecologia 73:105–107

    Article  Google Scholar 

  • Hogg P, Squires P, Fitter AH (1995) Acidification, nitrogen deposition and rapid vegetation change in a small valley mire in Yorkshire. Biol Conserv 71:143–153

    Article  Google Scholar 

  • Ilachinski A (2001) Cellular automata: a discrete universe. World Scientific, Singapore

    Google Scholar 

  • Lagan SJ (1999) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    PubMed  Article  CAS  Google Scholar 

  • Leps J (1988) Mathematical modelling of ecological succession: a review. Folia Geobot Phytotaxon 23:79–94

    Google Scholar 

  • Lippe E, De Smidt JT, Glenn-Lewin DC (1985) Marcov models and succession: a test from heathland in the Netherlands. J Ecol 73:775–791

    Article  Google Scholar 

  • Logofet DO, Lesnaya EV (2000) The mathematics of Markov models: what Markov chains can really predict in forest successions. Ecol Model 126:285–298

    Article  Google Scholar 

  • Miles J (1981) Problems in heathland and grassland dynamics. Vegetatio 46:61–74

    Article  Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the kappa statistic. Ecol Model 62:275–293

    Article  Google Scholar 

  • Natura 2000 Networking Programme (1992) Natura 2000 FRANCE. Available from http://natura2000.environnement.gouv.fr/. Accessed 18 Dec 2009

  • Niemeyer M, Niemeyer T, Fottner S, Haerdtle W, Mohamed A (2007) Impact of sod-cutting and choppering on nutrient budgets of dry heathlands. Biol Conserv 134:344–353

    Article  Google Scholar 

  • Office National des Forêts (ONF) (2000) RBD de la Mares aux Joncs Etude écologique d’une lande de platière. Unpublished report, Celule de l’appui écologique de l’ONF d’Ile de France

  • Ormsby T, Napoleon E, Burke R et al (2004) Getting to know ArcGIS desktop basics of ArcView ArcEditor and ArcInfo. ESRI Press, Redlands

    Google Scholar 

  • Paegelow M, Camacho-Olmedo MT (2005) Possibilities and limits of prospective GIS land cover modeling—a compared case study: Garrotxes (France) and Alta Alpujarra Granadina (Spain). Int J Geogr Inf Sci 6:697–722

    Article  Google Scholar 

  • Paegelow M, Camacho-Olmedo MT (2008) Advances in geomatic simulations for environmental dynamics. In: Paegelow M, Camacho-Olmedo MT (eds) Modelling environmental dynamics advances in geomatic solutions. Springer, Berlin, pp 3–54

    Google Scholar 

  • Paegelow M, Villa N, Cornez L, Ferraty F, Ferre L, Sarda P (2004) Prospective modelling of georeferenced data by crossed GIS and statistic approaches applied to land cover in Mediterranean mountain areas. Cybergeo: Eur J Geogr Number 295. Available on http://cybergeo.revues.org/index2811.html. Accessed 18 Dec 2007

  • Piessens K, Honnay O, Devlaeminck R, Hermy M (2006) Biotic and abiotic edge effects in highly fragmented heathlands adjacent to cropland and forest agriculture. Ecosyst Environ 114:335–342

    Article  Google Scholar 

  • Pornon H (1992) Les SIG: mise en œuvre et applications. Hermès, Paris

    Google Scholar 

  • Roque J (2003) Référentiel régional pédologique de l’Ile de France 1/250000. INRA, Paris

    Google Scholar 

  • Symes N, Day J (2003) A practical guide to the restoration and management of lowland heathland. The RSPB, Sandy

    Google Scholar 

  • Thompson DBA, MacDonald AJ, Marsden JH, Galbraith CA (1995) Upland heather moorland in Great Britain: a review of international importance, vegetation change and some objectives for nature conservation. Biol Conserv 71:163–178

    Article  Google Scholar 

  • Todd PA, Phillips JDP, Putwain PD, Marrs RH (2000) Control of Molinia caerulea on moorland. Grass Forage Sci 55:181–191

    Article  Google Scholar 

  • Ulrich E, Lanier M, Croisé L (2007) Évolution de l’acidité, des concentrations de soufre et de l’azote dans les précipitations analysées dans le réseau Renecofor. RDV Tech ONF 15:3–8

    Google Scholar 

  • Usher MB (1981) Modelling ecological succession with particular reference to Markovian models. Vegetation 46:11–18

    Article  Google Scholar 

  • Usher MB (1992) Management and diversity of arthropods in Calluna heathland. Biodivers Conserv 1:63–79

    Article  Google Scholar 

  • Usher MB, Thompson DBA (1993) Variation in the upland heathlands of Great Britain. Conservation importance. Biol Conserv 66:69–81

    Article  Google Scholar 

  • Vietch N, Webb NR, Wyatt BK (1995) The application of geographic information systems and remotely sensed data to the conservation of heathland fragments. Biol Conserv 72:91–97

    Article  Google Scholar 

  • Von Neumann J (1951) The general and logical theory of automata. In: Jeffress LA (ed) Cerebral mechanisms in behavior: the Hixon symposium. Wiley, New York, pp 1–31

    Google Scholar 

  • Walker LR, Walker J, Hobbs RJ (2007) Linking restoration and ecological succession. Springer, New York

    Book  Google Scholar 

  • Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35:987–990

    Article  Google Scholar 

  • Webb JR, Drewitt AL, Measures GH (2010) Managing for species: integrating the needs of England’s priority species into habitat management. Part 1 report. Natural England Research Reports, number 024. Available on http://naturalengland.etraderstores.com/NaturalEnglandShop/NERR024. Accessed 5 Aug 2010

Download references

Acknowledgments

We thank the ONF, in particular the Unit of Ecological Support for providing the necessary data for this study. We thank the anonymous reviewers for his/her thorough review which significantly contributed to improving the quality of the publication. We are grateful to Sally Reynolds for correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Mobaied.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mobaied, S., Riera, B., Lalanne, A. et al. The use of diachronic spatial approaches and predictive modelling to study the vegetation dynamics of a managed heathland. Biodivers Conserv 20, 73–88 (2011). https://doi.org/10.1007/s10531-010-9947-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-010-9947-1

Keywords

  • Heathlands
  • Vegetation dynamics
  • Molinia caerulea
  • Calluna vulgaris
  • GIS
  • Predictive modelling