Skip to main content

Advertisement

Log in

Preliminary global assessment of terrestrial biodiversity consequences of sea-level rise mediated by climate change

  • Original paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Considerable attention has focused on the climatic effects of global climate change on biodiversity, but few analyses and no broad assessments have evaluated effects of sea-level rise on biodiversity. Taking advantage of new maps of marine intrusion under scenarios of 1 and 6 m sea-level rise, we calculated areal losses for all terrestrial ecoregions globally, with areal losses for particular ecoregions ranging from nil to complete. Marine intrusion is a global phenomenon, but its effects are most prominent in Southeast Asia and nearby islands, eastern North America, northeastern South America, and western Alaska. Making assumptions regarding faunal responses to reduced distributional areas of species endemic to ecoregions, we estimated likely numbers of extinctions caused by sea-level rise, and found that marine-intrusion-caused extinctions of narrow endemics are likely to be most prominent in northeastern South America, although anticipated extinctions in smaller numbers are scattered worldwide. This assessment serves as a complement to recent estimates of losses owing to changing climatic conditions, considering a dimension of biodiversity consequences of climate change that has not previously been taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anciães M, Peterson AT (2006) Climate change effects on neotropical manakin diversity based on ecological niche modeling. Condor 108:778–791

    Article  Google Scholar 

  • Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397

    Article  PubMed  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513

    Article  Google Scholar 

  • Bindschadler RA (1998) Future of the West Antarctic ice sheet. Science 282:428–429

    Article  CAS  Google Scholar 

  • Bosello F, Roson R, Tol R (2007) Economy-wide estimates of the implications of climate change: sea level rise. Environ Res Econ 37:549–571

    Article  Google Scholar 

  • Brooks TM, Pimm SL, Collar NJ (1997) The extent of deforestation predicts the number of birds threatened with extinction in insular South-east Asia. Conserv Biol 11:382–394

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Buckley LB, Roughgarden J (2004) Biodiversity conservation: effects of changes in climate and land use. Nature 430:1

    Article  Google Scholar 

  • Carter TR, Jones RN, Lu X, Bhadwal S, Conde C, Mearns LO, O’Neill BC, Rounsevell MD, Zurek MB (2007) New assessment methods and the characterization of future conditions. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, pp 133–171

    Google Scholar 

  • Daniels R, White T, Chapman K (1993) Sea-level rise: destruction of threatened and endangered species habitat in South Carolina. Environ Manag 17:373–385

    Article  Google Scholar 

  • Dasgupta S, Laplante B, Meisner C, Wheeler D, Yan J (2007) The impact of sea level rise on developing countries: a comparative analysis. World Bank, Washington, DC

    Book  Google Scholar 

  • Dobson A, Jolly A, Rubenstein D (1989) The greenhouse effect and biological diversity. Trends Ecol Evol 4:64–68

    Article  Google Scholar 

  • Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol Lett 9:215–227

    Article  PubMed  Google Scholar 

  • Dyurgerov MB, Meier MF (1997) Year-to-year fluctuations of global mass balance of small glaciers and their contribution to sea-level changes. Arct Alp Res 29:392–402

    Article  Google Scholar 

  • Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Change Biol 8:679–693

    Article  Google Scholar 

  • Galbraith H, Jones R, Park R, Clough J, Herrod-Julius S, Harrington B, Page G (2002) Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25:173–183

    Article  Google Scholar 

  • Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci 68:338–354

    Article  Google Scholar 

  • Hitz S, Smith J (2004) Estimating global impacts from climate change. Glob Environ Change 14:201–218

    Article  Google Scholar 

  • Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315

    Article  Google Scholar 

  • Kinzig AP, Harte J (2000) Implications of endemics-area relationships for estimates of species extinctions. Ecology 81:3305–3311

    Google Scholar 

  • LaFever DH, Lopez RR, Feagin RA, Silvy NJ (2007) Predicting the impacts of future sea-level rise on an endangered lagomorph. Environ Manag 40:430–437

    Article  Google Scholar 

  • Lewis OT (2006) Climate change, species–area curves and the extinction crisis. Phil Trans R Soc B: Biol Sci 361:163–171

    Article  Google Scholar 

  • Li X, Rowley RJ, Kostelnick JC, Braaten D, Meisel J, Hulbutta K (2009) GIS analysis of global impacts from sea level rise. Photogramm Eng Remote Sens 75(7):807–818

    Google Scholar 

  • Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species area relationship. J Biogeogr 27:17–26

    Article  Google Scholar 

  • Lovejoy TE, Hannah L (eds) (2005) Climate change and biodiversity. Yale University Press, New Haven

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Marbaix P, Nicholls RJ (2007) Accurately determining the risks of rising sea level. EOS Trans 88(43):441–442

    Article  Google Scholar 

  • May RM, Stumpf MPH (2000) Species-area relations in tropical forests. Science 290:2084–2086

    Article  CAS  PubMed  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556

    Article  Google Scholar 

  • Mimura N (1999) Vulnerability of island countries in the South Pacific to sea level rise and climate change. Clim Res 12:137–143

    Article  Google Scholar 

  • Oerlemans J, Bassford RP, Chapman W, Dowdeswell JA, Glazovsky AF, Hagen JO, Melvold K, de Ruyter de Wildt M, van de Wal RSW (2005) Estimating the contribution of Arctic glaciers to sea-level change in the next 100 years. Ann Glaciol 42:230–236

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A (2006) Simulating Arctic climate warmth and icefield retreat in the last intergalciation. Sci 311:1751–1753

    Article  CAS  Google Scholar 

  • Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Sci 311:1747–1750

    Article  CAS  Google Scholar 

  • Parmesan C (1996) Climate and species’ range. Nature 382:765–766

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent J, Thomas JA, Warren M (1999) Poleward shift of butterfly species’ ranges associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Peters RL, Darling JDS (1985) The greenhouse effect and nature reserves. Bioscience 35:707–717

    Article  Google Scholar 

  • Peterson AT (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Glob Change Biol 9:647–655

    Article  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Article  CAS  PubMed  Google Scholar 

  • Peterson AT, Tian H, Martínez-Meyer E, Soberón J, Sánchez-Cordero V, Huntley B (2005) Modeling distributional shifts of individual species and biomes. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven, pp 211–228

    Google Scholar 

  • Pimm SL, Raven P (2000) Extinction by numbers. Nature 403:843–845

    Article  CAS  PubMed  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311:986–990

    Article  CAS  PubMed  Google Scholar 

  • Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland ice sheets. Sci 315:1529–1532

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgely GE, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004a) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004b) Accelerated sea-level rise from West Antarctica. Science 306:255–258

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Araujo MB, Pearson RG, Whittaker RJ, Brotons L, Lavorel S (2004) Biodiversity conservation: uncertainty in predictions of extinction risk. Nature 430:34

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Midgely GF, Hughes GO, Bomhard B, Drew G, Rutherford MC, Woodward F (2006) Endemic species and ecosystem sensitivity to climate change in Namibia. Glob Change Biol 12:759–776

    Article  Google Scholar 

  • Titus JG (1990) Effect of climate change on sea-level rise and the implications for world agriculture. Hortscience 25:1567–1572

    Google Scholar 

  • Tjørve E (2003) Shapes and functions of species area curves: a review of possible models. J Biogeogr 30:827–835

    Article  Google Scholar 

  • Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc B 265:1867–1870

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaily Menon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menon, S., Soberón, J., Li, X. et al. Preliminary global assessment of terrestrial biodiversity consequences of sea-level rise mediated by climate change. Biodivers Conserv 19, 1599–1609 (2010). https://doi.org/10.1007/s10531-010-9790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-010-9790-4

Keywords

Navigation