Biodiversity and Conservation

, Volume 19, Issue 4, pp 1153–1174 | Cite as

Eco-floristic sectors and deforestation threats in Sumatra: identifying new conservation area network priorities for ecosystem-based land use planning

  • Yves Laumonier
  • Yumiko Uryu
  • Michael Stüwe
  • Arif Budiman
  • Budi Setiabudi
  • Oki Hadian
Original Paper


Biogeographical studies are a necessary step in establishing conservation area networks. Determining the ecological factors influencing vegetation is also a basic principle for hierarchical ecological classifications and a necessary prerequisite for ecosystem-based land use planning. Eco-floristic sectors (EFS) have already been identified for the Indonesian island of Sumatra, combining both approaches, dividing it into 38 EFSs representing unique ecosystems in terms of tree flora and environment (Laumonier 1997). The impact of deforestation on individual EFSs has been highly varied and in some cases extreme. We assigned one of five ‘extinction risk categories’ to each EFS based on the percentage of forest lost between 1985 and 2007. Eighty-five percent of all forest loss (10.2 million ha) occurred in the eastern peneplain, western lowland regions and swamps. In 2007, only 29% of forests were protected by conservation areas, only nine of the 38 EFS had more than 50% of their remaining forest cover protected. 38% of remaining forest was “critically endangered”, “endangered” or “vulnerable” EFSs (5 million ha) but only 1 million ha (20%) were protected. Sumatra’s existing network of conservation areas does not adequately represent the island’s ecosystems. Priorities for a new conservation area network can be formulated for integration into Sumatra’s new land use plans at provincial and district level. Decision makers can now use EFSs to locate new conservation areas so they represent and maintain the whole range of the island’s diversity.


Eco-floristic zoning Conservation assessment Deforestation Threat Sumatra 



This paper is based on an oral presentation given at the Society for Conservation Biology annual meeting, ‘Conservation: harmony for nature and society’, Beijing, 11–16 July 2009. The research was partly funded by the French Ministry of Foreign Affairs and the World Wildlife Fund. The authors wish to acknowledge these institutions, Jean-Laurent Pfund and Terry Sunderland, all of whom offered comments on an earlier draft of this paper. Two anonymous reviewers for this journal provided useful critiques and insights, for which they are acknowledged and thanked.


  1. Ashton PS (1972) The quaternary geomorphological history of western Malesia and lowland forest phytogeography. Transactions of the second Aberdeen-Hull symposium on Malesian ecology, Misc Ser 13:35–62Google Scholar
  2. Ashton PS (1982) Dipterocarpaceae. Flora Males Ser I 9(2):237–552Google Scholar
  3. Bailey RG (1983) Delineation of ecosystem regions. Environ Manag 19:239–248Google Scholar
  4. Baillie IC, Ashton PS, Court MN, Anderson JAR, FitzPatrick EA, Tinsley J (1987) Site characteristics and the distribution of tree species in mixed dipterocarp forest on tertiary sediments in central Sarawak. Malays J Trop Ecol 3:201–220CrossRefGoogle Scholar
  5. Baker WJ, Coode MJE, Dransfield J, Harley MM, Hoffman P, Johns RJ (1998) Patterns of distribution of Malesian vascular plants. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backhuys Publishers, Leiden, pp 243–258Google Scholar
  6. Bemmelen, RW van (1949) The geology of Indonesia. Govt. Printing Office, The HagueGoogle Scholar
  7. Berry NJ, Phillips OL, Lewis SL, Hill JK, Edwards DP, Tawatao NB, Ahmad N, Magintan D, Khen CV, Maryati M, Ong RC, Hamer K (2010) The high value of logged tropical forests: lessons from northern Borneo. Biodivers Conserv. doi: 10.1007/s10531-010-9779-z
  8. Brady MA (1997) Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia. Ph.D. Thesis, University of British Columbia, Vancouver, CanadaGoogle Scholar
  9. Brooks T, Da Fonseca GAB, Rodrigues ASL (2004) Species, data and conservation planning. Conserv Biol 18(6):1682–1688CrossRefGoogle Scholar
  10. Canon CH, Summers M, Harting JR, Kessler PJA (2007) Developing conservation priorities based on forest type, condition, and threats in a poorly known ecoregion: Sulawesi, Indonesia. Biotropica 39(6):747–749CrossRefGoogle Scholar
  11. Clark CJ, Poulsen JR, Malonga R, Elkans PW Jr (2009) Logging concessions can extend the conservation estate for Central African tropical forests. Conserv Biol 23(5):1281–1293CrossRefPubMedGoogle Scholar
  12. Conservation International-Indonesia et al (2007) Priority sites for conservation in Sumatra: key biodiversity areas. Jakarta, Indonesia, 16 ppGoogle Scholar
  13. Corner EJH (1978) The freshwater swamp-forest of south Johore and Singapore. Botanic Gardens Parks, SingaporeGoogle Scholar
  14. Corner EJH (1985) The botany of some islets east of Pahang and Johore. Gard Bull Singap 38:1–42Google Scholar
  15. Cowling RM, Knight AT, Faith DP, Ferrier S, Lombard AT, Driver A, Rouget M, Maze K, Desmet PG (2004) Nature requires more than a passion for species. Conserv Biol 18(6):1674–1676CrossRefGoogle Scholar
  16. Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2008) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol. doi: 10.1111/j.1523–1739.2008.01096.x
  17. DeFries R, Hansen A, Newton AC, Hansen MC (2005) Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol Appl 15:19–26CrossRefGoogle Scholar
  18. FAO (1989) Classification and mapping of vegetation types in tropical Asia. FAO, RomeGoogle Scholar
  19. Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51:331–363CrossRefPubMedGoogle Scholar
  20. Flenley JR (1979) The equatorial rain forest, a geological history. Butterworths, LondonGoogle Scholar
  21. Fontanel J, Chantefort A (1978) Bioclimats du monde Indonésien (bioclimates of the Indonesian archipelago). Institute of French, PondicherryGoogle Scholar
  22. Gaussen H (1959) The vegetation maps. Trav Sec Sci Tech Inst Fr Pondicherry 1(4):155–179Google Scholar
  23. Gaveau DLA, Adnan B, Epting J, Kumara I, Suyikno B, Sumantri H (2007) Deforestation map (1990–2000) of Sumatra and Siberut at 150,000 scale. Indonesia Wildlife Conservation Society Indonesia Program. Conservation International and Directorate General of Forest Protection and Nature Conservation, Bogor, IndonesiaGoogle Scholar
  24. Gaveau DLA, Epting J, Lyne O, Linkie M, Kumara I, Kanninen M, Leader-Williams N (2009) Evaluating whether protected areas reduce tropical deforestation in Sumatra. J Biogeogr doi: 10.1111/j.1365-2699.2009.02147.x
  25. Hamilton W (1979) Tectonics of the Indonesian region. Geological Survey Professional Paper. U.S. Gov. Print. Office, Washington, DCGoogle Scholar
  26. Harris NL, Petrova S, Stolle F, Brown S (2008) Identifying optimal areas for REDD intervention: east Kalimantan, Indonesia as a case study. Environ Res Lett 3:11 pp. doi: 10.1088/1748-9326/3/3/035006 Google Scholar
  27. Holloway JD, Hall R (1998) SE Asian geology and biogeography: an introduction. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backhuys Publishers, Leiden, pp 1–23Google Scholar
  28. IUCN and WWF (1995) Centres of plant diversity: a guide and strategy for their conservation. Volume 2. Asia, Australia and the Pacific. IUCN and WWF, Cambridge, UK, p 598Google Scholar
  29. Jepson P, Whittaker RJ (2002) Ecoregions in context: a critique with special reference to Indonesia. Conserv Biol 16(1):42–57CrossRefGoogle Scholar
  30. Jongman RHG, ter Braak CJF, van Tongeren OFF (eds) (1987) Data analysis in community and landscape ecology. PUDOC, Wageningen, p 229Google Scholar
  31. Kanninen M, Murdiyarso D, Seymour F, Angelsen A, Wunder S, German L (2007) Do trees grow on money? The implications of deforestation research for policies to promote REDD. Center for International Forestry Research (CIFOR), Bogor, IndonesiaGoogle Scholar
  32. Kemp RH, Namkoong G, Wadsworth FH (1993) Conservation of genetic resources in tropical forest management—principles and concepts. FAO Forestry Paper 107, 105 ppGoogle Scholar
  33. Kettle CJ (2010) Ecological considerations for using dipterocarps for restoration of lowland rainforest in Southeast Asia. Biodivers Conserv. doi: 10.1007/s10531-009-9772-6
  34. King RB (2002) Land cover mapping principles: a return to interpretation fundamentals. Int J Remote Sens 23(18):3525–3545CrossRefGoogle Scholar
  35. Kitayama K (1992) An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetation 102:149–171CrossRefGoogle Scholar
  36. Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64CrossRefGoogle Scholar
  37. Küchler AW, Zonneveld IS (eds) (1988) Vegetation mapping, vol 10. Kluwer Academic Publishers, Dordrecht, p 635Google Scholar
  38. Kwan WY, Whitmore TC (1970) On the influence of soil properties on species distribution in Malayan lowland dipterocarp rain forest. Malay For 33:42–54Google Scholar
  39. Laumonier Y (1983) International map of the vegetation. “Southern Sumatra”. 1:1.000.000. Institut de la Carte Internationale de la Végétation, Toulouse, France and SEAMEO-BIOTROP, BogorGoogle Scholar
  40. Laumonier Y (1990) Search for phytogeographic provinces in Sumatra. In: Baas P, Kalkman K, Geesink R (eds) The plant diversity of Malaysia. Kluwer Academic Publishers, Dordrecht, pp 193–211Google Scholar
  41. Laumonier Y (1997) The vegetation and physiography of Sumatra. Kluwer Academic Publishers, UtrechtGoogle Scholar
  42. Laumonier Y, Purnadjaya P, Setiabudi S (1986) International map of the vegetation and ecological conditions. “Central Sumatra”. 1:1.000.000. Institut de la Carte Internationale de la Végétation, Toulouse, France and SEAMEO-BIOTROP, BogorGoogle Scholar
  43. Laumonier Y, Purnadjaya P, Setiabudi S (1987) International map of the vegetation. “Northern Sumatra”. 1:1.000.000. Institut de la Carte Internationale de la Végétation, Toulouse, France and SEAMEO-BIOTROP, BogorGoogle Scholar
  44. Legris P, Blasco F (1979) Joint pilot project for tropical forest monitoring. FAO and UNESCO, FAO Rome. Unpublished reportGoogle Scholar
  45. Lindenmayer DB (1999) Future directions for biodiversity conservation in managed forests: indicator species, impact studies and monitoring programs. For Ecol Manag 115(2–3):277–287CrossRefGoogle Scholar
  46. Long AJ, Crosby MJ, Stattersfield AJ, Wege DC (1996) Towards a global map of biodiversity: patterns in the distribution of restricted-range birds. Glob Ecol Biogeogr Lett 5:281–304CrossRefGoogle Scholar
  47. MacKinnon J, Wind J (1981) Birds of Indonesia. Special report F0/INS/78/061. FAO, RomeGoogle Scholar
  48. Margules CR, Pressey RL, Williams PH (2002) Representing biodiversity: data and procedures for identifying priority areas for conservation. J Biosci 27:309–326CrossRefPubMedGoogle Scholar
  49. Michaux B (1994) Land movements and animal distributions in east Wallacea (eastern Indonesia, Papua New Guinea and Melanesia). Palaeogeogr, Palaeoclim, Palaeecol 112:323–343CrossRefGoogle Scholar
  50. Mueller-Dombois D, Hellenberg H (1974) Aims and method of vegetation ecology. Blackburn, New York, p 547Google Scholar
  51. Myers R, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  52. Oldeman LR, Las I, Darvis SN (1979) An agroclimatic map of Sumatra, vol 52. Cent Res Inst Agric Bogor, pp 1–35 + mapGoogle Scholar
  53. Olson DM, Dinerstein E (1998) The global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515CrossRefGoogle Scholar
  54. Paine JR, Byron N, Poffenberger M (1997) Asia-Pacific forestry sector outlook study: status, trends and future scenarios for forest conservation including protected areas in the Asia-Pacific region. FAO working paper.
  55. Paoli GD, Curran LM, Slik JWF (2008) Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287–299CrossRefPubMedGoogle Scholar
  56. Pendry CA, Proctor J (1997) Altitudinal zonation of rain forest on Bukit Belalong, Brunei: soils, forest structure and floristics. J Trop Ecol 13:221–241CrossRefGoogle Scholar
  57. Poore MED (1968) Studies in Malaysian rain forest I. The forest on Triassic sediments in Jengka forest reserve. J Ecol 56:143–196CrossRefGoogle Scholar
  58. Sleumer H (1966) Ericaceae. Flora Males, Ser I 6(4):469–914Google Scholar
  59. Slik JWF, Poulsen AD, Ashton PS et al (2003) A floristic analysis of the lowland dipterocarp forests of Borneo. J Biogeogr 30:1517–1531CrossRefGoogle Scholar
  60. Slik JWF, Raes N, Aiba SI, Brearley FQ et al (2009) Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Divers Distrib 15:523–532CrossRefGoogle Scholar
  61. Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19(12):654–660CrossRefPubMedGoogle Scholar
  62. Sujatnika JP, Soehartono TR, Crosby MJ, Mardiastuti A (1995) Conserving Indonesian biodiversity: the endemic bird area approach. PHPA/Birdlife International, Cambridge, UKGoogle Scholar
  63. Symington CF (1943) Forester manual of dipterocarps. Malay For Rec 244 ppGoogle Scholar
  64. Trichon V (1997) Hétérogénéité spatiale des structures en forêt naturelle de basse altitude à Sumatra, Indonésie. Thèse Doctorat Université de Toulouse 3, Toulouse, FranceGoogle Scholar
  65. UNESCO (1973) International classification and cartography of the vegetation. Ecology and conservation series. UNESCO, Paris, 92 ppGoogle Scholar
  66. Uryu Y, Mott C, Foead N, Yulianto K, Budiman A et al (2008) Deforestation, forest degradation, biodiversity loss and CO2 emissions in Riau, Sumatra, Indonesia. WWF Indonesia Technical Report, Jakarta, IndonesiaGoogle Scholar
  67. van Balgooy MMJ (1971) Plant geography of the Pacific. Blumea suppl. to vol. 6. 222 ppGoogle Scholar
  68. van Balgooy MMJ (1987) A plant geographical analysis of Sulawesi. In: Whitmore TC (ed) Biogeographical evolution of the Malay Archipelago, vol 4. pp 94–102Google Scholar
  69. van der Werf GR, Dempewolf J, Trigg SN, Randerson JT, Kasibhatla PS, Giglio L, Murdiyarso D, Peters W, Morton DC, Collatz GJ, Dolman AJ, DeFries RS (2008) Climate regulation of fire emissions and deforestation in equatorial Asia. PNAS 105(51):20350–20355CrossRefPubMedGoogle Scholar
  70. van Steenis CGGJ (1935) On the origin of the Malaysian mountain flora. I–III. Altitudinal zones, general considerations and renewed statement of the problem. Bull Jard Bot Btzg III–13:289–417Google Scholar
  71. van Steenis CGGJ (1969) Plant speciation in Malesia, with special reference to the theory of non-adaptive saltatory evolution. Biol J Linn Soc 1:97–133CrossRefGoogle Scholar
  72. van Steenis CGGJ (1971) Plant conservation in Malaysia. Bull Jard Bot Nat Belg 41:189–202CrossRefGoogle Scholar
  73. van Steenis CGGJ (1972) The mountain flora of Java. J Brill, LeidenGoogle Scholar
  74. Verstappen HT (1973) A geomorphological reconnaissance of Sumatera and adjacent islands (Indonesia). I.T.C, EntschedeGoogle Scholar
  75. Whitmore TC (ed) (1981) Wallace’s line and plate tectonics. Clarendon Press, OxfordGoogle Scholar
  76. Whitmore TC (ed) (1987) Biogeographical evolution of the Malay archipelago. Oxford monographs on biogeography, vol 4. Clarendon Press, OxfordGoogle Scholar
  77. Whittaker RJ, Araujo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23CrossRefGoogle Scholar
  78. Wikramanayake E, Dinerstein E, Loucks C, Olson D, Morrison J, Lamoreux J, McKnight M, Hedao P (2001) Terrestrial ecoregions of the Indo-Pacific: a conservation assessment. Island Press, Washington, DCGoogle Scholar
  79. Wikramanayake E, Dinerstein E, Loucks C, Olson D, Morrison J, Lamoreux J, McKnight M, Hedao P (2002) Ecoregions in ascendance: reply to Jepson and Whittaker. Conserv Biol 16(1):238–243CrossRefGoogle Scholar
  80. Wilcove DS, Koh LP (2010) Addressing the threats to biodiversity from oil-palm agriculture. Biodivers Conserv. doi: 10.1007/s10531-009-9760-x
  81. Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv. doi: 10.1007/s10531-010-9783-3
  82. Woods AW, Wohletz K (1991) Dimensions and dynamics of co-ignimbrite eruption columns. Nature 350:225–227CrossRefGoogle Scholar
  83. World Resources Institute (2003) World resources 2002–2004: decisions for the Earth: balance, voice and power. United Nations Development Programme, United Nations Environment Programme, World Bank and World Resources Institute.
  84. Yacono-Janoueix D, Perard J (1978) Pluviosité et régimes pluviométriques à Sumatra. Bulletin de l’Association des Géographes Français (France) 55:329–338Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yves Laumonier
    • 1
    • 5
  • Yumiko Uryu
    • 2
  • Michael Stüwe
    • 2
  • Arif Budiman
    • 3
  • Budi Setiabudi
    • 4
  • Oki Hadian
    • 3
  1. 1.Environment and Societies Department, UR 36Center International for Research on Agronomy and Development (CIRAD)MontpellierFrance
  2. 2.WWF USWashingtonUSA
  3. 3.WWF-IndonesiaKawasan Mega Kuningan JakartaIndonesia
  4. 4.BIOTROP-SEAMEO Center for Tropical BiologyBogorIndonesia
  5. 5.Center International for Forestry Research (CIFOR)BogorIndonesia

Personalised recommendations