Biodiversity and Conservation

, Volume 19, Issue 3, pp 619–635 | Cite as

Habitat loss effects on spatial distribution of non-vascular epiphytes in a Brazilian Atlantic forest

  • Lisi Dámaris Pereira Alvarenga
  • Kátia Cavalcanti Pôrto
  • Juliana Rosa do Pará Marques de Oliveira
Original Paper


The vertical distribution of the richness, abundance, and composition of epiphytic bryophytes was studied in a matrix of fragmented habitats in the Brazilian Atlantic rainforest of the Murici Ecological Station (9°11′05″–9°16′48″ S, 35°45′20″–35°55′12″ W), northeastern Brazil. The aim was to compare the horizontal (between sites) and vertical (between phorophyte heights) turnover to test a hypothesis based on niche width vulnerability. There was a highly significant decreasing of richness accompanying the loss of habitat, and the most conserved fragment housed a total richness more than 10 times higher than the less conserved fragment. Epiphytes failed to colonize lower trunks (2.1–10 m) and higher zones in most of the non-conserved fragments; they were restricted to the base (0–2 m) and displayed a clear altered floristic composition. The species with restricted ecological amplitudes such as sun and shade tolerant taxa were more negatively affected by habitat loss than generalists. Although the mean richness of generalists decreased in non conserved fragments, the proportional contribution of this guild increased, proving that these taxa are the ones which persist in disturbed sites. The forest fragments capable of harboring rich epiphyte flora in the area studied are over 300 ha in size, which is far from being a common size among Brazilian Atlantic rainforest fragments. Hence, our results highlight the need of conserving the few large remnants in this ecosystem.


Canopy communities Conservation Guilds Functional groups Tropical rainforest 



The authors thank W. L. Silva, M. Dantas de Paula, A. Alves-Araújo and S. O. Costa for technical, logistical, and scientific support, as well as Dr. C. P. Alves-Costa for aid in analyzing the data. This study was carried out with the financial support of the Fundação O Boticário de Proteção à Natureza and the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq.


  1. Acebey A, Gradstein SR, Krömer T (2003) Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. J Trop Ecol 19:9–18CrossRefGoogle Scholar
  2. Alvarenga LDP, Pôrto KC (2007) Patch size and isolation effects on epiphytic and epiphyllous bryophytes in the fragmented Brazilian Atlantic forest. Biol Conserv 34(3):415–427Google Scholar
  3. Alvarenga LDP, Pôrto KC, Silva MPP (2009) Relations between regional-local habitat loss and metapopulation properties of epiphyllous bryophytes in the Brazilian Atlantic Forest. Biotropica (in press). doi:10.1111_j.1744-7429.2009.00532
  4. Andersson MS, Gradstein SR (2005) Impact of different management intensities on non-vascular epiphyte diversity in cacao plantations in western Ecuador. Biodivers Conserv 14:1101–1120CrossRefGoogle Scholar
  5. Aryanti NS, Bos MM, Kartawiniata K, Tjitrosoedirdjo SS, Guhardja E, Gradstein SR (2008) Bryophytes on tree trunks in natural forests, selectively logged forests and cacao agroforests in Central Sulawesi, Indonesia. Biol Conserv 141:2516–2527CrossRefGoogle Scholar
  6. Barlow J, Peres CA, Henriques LMP et al (2006) The responses of understorey birds to forest fragmentation, logging and wildfires: an Amazonian synthesis. Biol Conserv 128:182–192CrossRefGoogle Scholar
  7. Barthlott W, Schimt-Neuerburg V, Nieder J et al (2001) Diversity and abundance vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecol 152:145–156CrossRefGoogle Scholar
  8. Benítez-Malvido J, Martínez-Ramos M (2003) Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv Biol 17(2):389–400CrossRefGoogle Scholar
  9. Benzing DH (1990) Vascular epiphytes. Cambridge University Press, New YorkCrossRefGoogle Scholar
  10. Bishop J, Myers LW (2005) Associations between avian functional guild response and regional landscape properties for conservation planning. Ecol Indic 5:33–48CrossRefGoogle Scholar
  11. Brasil—MMA (2000) Avaliação e ações prioritárias para a conservação da biodiversidade da Mata Atlântica e Campos Sulinos. Conservation International do Brasil, Fundação SOS Mata Atlântica, Fundação Biodiversitas, Instituto de Pesquisas Ecológicas, Secretaria do Meio Ambiente do Estado de São Paulo, SEMAD/Instituto Estadual de Florestas-MG, BrasíliaGoogle Scholar
  12. Buck WR (1998) Pleurocarpous mosses of the West Indies. Mem N Y Bot Gard 1:1–401Google Scholar
  13. Chang S-C, Lai I-L, Wu J-T (2002) Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmos Res 64:159–167CrossRefGoogle Scholar
  14. Cleavitt NL (2005) Patterns, hypotheses and processes in the biology of rare bryophytes. Bryologist 108:554–566CrossRefGoogle Scholar
  15. Cornelissen JHC, Gradstein SR (1990) On the occurrence of bryophytes and macrolichens in different lowland rain forest types at Mabura Hill, Guyana. Trop Bryol 3:29–35Google Scholar
  16. Cornelissen JHC, ter Steege H (1989) Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. J Trop Ecol 5:131–150CrossRefGoogle Scholar
  17. Costa DP (1999) Epiphytic bryophyte diversity in primary and secondary lowland rainforest in southeastern Brazil. Bryologist 102(2):320–326CrossRefGoogle Scholar
  18. Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74CrossRefGoogle Scholar
  19. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Syst 34:487–515CrossRefGoogle Scholar
  20. Florschütz PA (1964) The mosses of Suriname. E.J. Brill, LeidenGoogle Scholar
  21. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  22. Frazer GW, Trofymow JA, Lertzman KP (2000) Canopy openness and leaf area in chronosequences of coastal temperate rainforests. Can J For Res 30:239–256CrossRefGoogle Scholar
  23. Gradstein SR (1992) Threatened bryophytes of the neotropical rain forest: a status report. Trop Bryol 6:83–93Google Scholar
  24. Gradstein SR (1994) Lejeuneaceae, Ptychantheae, Brachiolejeuneae. Flora Neotrop Monogr 62:1–225Google Scholar
  25. Gradstein SR (2008) Epiphytes of tropical montane forests—impact of deforestation and climate change. In: Gradstein SR, Homeier J, Gansert D (eds) The tropical mountain forest. University Press, GöttingenGoogle Scholar
  26. Gradstein SR, Costa DP (2003) Liverworts and hornworts of Brazil. Mem N Y Bot Gard 87:1–318Google Scholar
  27. Gradstein SR, Hietz P, Lücking R et al (1996) How to sample the epiphytic diversity of tropical rain forests. Ecotropica 2:59–72Google Scholar
  28. Gradstein SR, Churchill SP, Salazar Allen N (2001) Guide to the bryophytes of tropical America. Mem N Y Bot Gard 86:1–577Google Scholar
  29. Gustafson EJ, Parker GR (1994) Using an index of habitat patch proximity for landscape design. Landsc Urban Plan 29:117–130CrossRefGoogle Scholar
  30. Hietz-Siefert U, Hietz P, Guevara S (1996) Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biol Conserv 75:103–111CrossRefGoogle Scholar
  31. Hill JL, Curran PJ (2003) Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. J Biogeogr 30:1391–1403CrossRefGoogle Scholar
  32. IBGE (1985) Atlas Nacional do Brasil: Região Nordeste. IBGE, Rio de JaneiroGoogle Scholar
  33. Jenness J (2006) Surface tools (surf_tools.avx) extension for ArcView 3.x, v. 1.6a. Jenness Enterprises. Available in:
  34. Kapos V (1989) Effects of isolation on water status of forest patches in the Brazilian Amazon. J Trop Ecol 5:173–185CrossRefGoogle Scholar
  35. Krömer T, Gradstein SR (2004) Species richness of epiphytes in montane rain forests and fallows in Bolivia. Selbyana 25:190–195Google Scholar
  36. Laurence WF (1999) Reflections on the tropical deforestation crisis. Biol Conserv 91:109–117CrossRefGoogle Scholar
  37. Laurence WF, Ferreira LV, Rankin-de Merona JM et al (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79(6):2032–2040CrossRefGoogle Scholar
  38. Leerdam A, Veneklaas EJ (1990) The distribution of epiphyte growth-forms in the canopy of a Colombian cloud forest. Vegetatio 87:59–71CrossRefGoogle Scholar
  39. McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. General technical report PNW-GTR-351, USDA Forest Service. Pacific Northwest Research Station, PortlandGoogle Scholar
  40. Moffet MW, Lowman MD (1995) Canopy access techniques. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 3–26Google Scholar
  41. Montfoort D, Ek RC (1990) Vertical distribution and ecology of epiphytic Bryophytes and lichens in a lowland rain forest in French Guiana. PhD Thesis, Institute of Systematic Botany, UtrechtGoogle Scholar
  42. Moura FBP (2006) A Mata Atlântica em Alagoas. Editora da UFAL, MaceióGoogle Scholar
  43. Nöske N, Hilt N, Werner F, Brehm G, Fiedler K, Sipman HJ, Gradstein SR (2008) Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl Ecol 9:4–12CrossRefGoogle Scholar
  44. Oliveira MA, Grillo AS, Tabarelli M (2003) Forest edge in the Brazilian Atlantic forest: drastic changes in trees species assemblages. Oryx 38:389–394Google Scholar
  45. Padmawathe R, Qureshi Q, Rawat GS (2004) Effects of selective logging on vascular epiphyte diversity in a moist lowland forest of eastern Himalaya, India. Biol Conserv 119:81–92CrossRefGoogle Scholar
  46. Pineda E, Halffter G (2004) Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biol Conserv 117:499–508CrossRefGoogle Scholar
  47. Pócs T (1982) The tropical bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 54–104Google Scholar
  48. Pócs T, Tóthmérész B (1997) Foliicolous bryophyte diversity in tropical rainforest. Abstr Bot 21:135–144Google Scholar
  49. Primack RB, Rodrigues H (2001) Biologia da Conservação. Midiograf, LondrinaGoogle Scholar
  50. Putman RJ (1996) Community ecology. TJ Press (Padstow) Ltd, LondonGoogle Scholar
  51. Ranta P, Blom T, Niemelä J et al (1998) The fragmented Atlantic rain forest of Brazil: size, shape and distribution of forest fragments. Biodivers Conserv 7:385–403CrossRefGoogle Scholar
  52. Rhoades FM (1995) Nonvascular epiphytes in forest canopies: worldwide distribution, abundance and ecological roles. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, pp 353–408Google Scholar
  53. Richards PW (1984) The ecology of tropical forest bryophytes. In: Schuster RM (ed) New manual of bryology. The Hattori Botanical Laboratory, Nichinan, pp 1233–1270Google Scholar
  54. Sharp AJ, Crum H, Eckel PM (1994) The moss flora of Mexico. Mem N Y Bot Gard 69:1–1113Google Scholar
  55. Silva MPP, Pôrto KC (2009) Effect of fragmentation on the community structure of epixylic bryophytes in Atlantic Forest remnants in the Northeast of Brazil. Biodivers Conserv 18:317–337CrossRefGoogle Scholar
  56. Sporn SG, Bos MM, Hoffstätter-Müncheberg M, Kessler M, Gradstein SR (2009) Microclimate determines community composition but not richness of epiphytic understory bryophytes of rainforest and cacao agroforest in Indonesia. Funct Plant Biol 36:171–179CrossRefGoogle Scholar
  57. Tabarelli M, Mantovani W, Peres CA (1999) Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol Conserv 91:119–127CrossRefGoogle Scholar
  58. Tonhasca A Jr (2005) Ecologia e história natural da Mata Atlântica. Editora Interciência, Rio de JaneiroGoogle Scholar
  59. Turner TH, Tan HTW, Wee YC et al (1994) A study of plant species extinction in Singapore, lessons for conservation of tropical biodiversity. Conserv Biol 83:705–712CrossRefGoogle Scholar
  60. Uniyal PL (1999) Role of bryophytes in conservation of ecosystems and biodiversity. Botanica 49:101–115Google Scholar
  61. Veloso HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira adaptada a um sistema universal. Instituto Brasileiro de Geografia e Estatística, Rio de JaneiroGoogle Scholar
  62. Veneklaas EJ, Zagt RJ, Leerdam A et al (1990) Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89:183–192CrossRefGoogle Scholar
  63. Wolf JHD (2005) The response of epiphytes to anthropogenic disturbance of pine-oak forest in the highlands of Chiapas, México. For Ecol Manage 212:376–393CrossRefGoogle Scholar
  64. Zar JH (1996) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar
  65. Zartman CE (2003) Habitat fragmentation impacts on epiphyllous bryophyte communities in central Amazonia. Ecology 84:948–954CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Lisi Dámaris Pereira Alvarenga
    • 1
  • Kátia Cavalcanti Pôrto
    • 1
  • Juliana Rosa do Pará Marques de Oliveira
    • 1
  1. 1.Laboratory of Bryophytes Biology, CCB, Department of BotanyFederal University of PernambucoRecifeBrazil

Personalised recommendations