Skip to main content
Log in

Tree size and herbivory determine below-canopy grass quality and species composition in savannahs

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Large single-standing trees are rapidly declining in savannahs, ecosystems supporting a high diversity of large herbivorous mammals. Savannah trees are important as they support both a unique flora and fauna. The herbaceous layer in particular responds to the structural and functional properties of a tree. As shrubland expands stem thickening occurs and large trees are replaced by smaller trees. Here we examine whether small trees are as effective in providing advantages for grasses growing beneath their crowns as large trees are. The role of herbivory in this positive tree-grass interaction is also investigated. We assessed soil and grass nutrient content, structural properties, and herbaceous species composition beneath trees of three size classes and under two grazing regimes in a South African savannah. We found that grass leaf content (N and P) beneath the crowns of particularly large (ca. 3.5 m) and very large trees (ca. 9 m) was as much as 40% greater than the same grass species not growing under a tree canopy, whereas nutrient contents of grasses did not differ beneath small trees (<2.3 m). Moderate herbivory enhanced these effects slightly. Grass species composition differed beneath and beyond the tree canopy but not between tree size classes. As large trees significantly improve the grass nutrient quality for grazers in contrast to smaller trees, the decline of the former should be halted. The presence of trees further increases grass species diversity and patchiness by favouring shade-tolerant species. Both grazing wildlife and livestock will benefit from the presence of large trees because of their structural and functional importance for savannahs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

VLT:

Very large tree

LT:

Large tree

ST:

Small tree

N:

Nitrogen

P:

Phosphorus

References

  • Adler PB, Raff DA, Lauenroth WK (2001) The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128:465–479. doi:10.1007/s004420100737

    Article  Google Scholar 

  • Alhamad MN, Alrababah MA (2008) Defoliation and competition effects in a productivity gradient for a semiarid Mediterranean annual grassland community. Basic Appl Ecol 9:224–232. doi:10.1016/j.baae.2007.03.008

    Article  Google Scholar 

  • Ash AJ, McIvor JG (1998) Forage quality and feed intake responses of cattle to improved pastures, tree killing and stocking rate in open eucalypt woodlands of north-eastern Australia. J Agric Sci 131:211–219. doi:10.1017/S0021859698005607

    Article  Google Scholar 

  • Augustine DJ (2003) Spatial heterogeneity in the herbaceous layer of a semi-arid savanna ecosystem. Plant Ecol 167:319–332. doi:10.1023/A:1023927512590

    Article  Google Scholar 

  • Belsky AJ (1994) Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass competition. Ecology 75:922–932. doi:10.2307/1939416

    Article  Google Scholar 

  • Belsky AJ, Mwonga SM, Amundson RG, Duxbury JM, Ali AR (1993) Comparative effects of isolated trees on their undercanopy environments in high- and low-rainfall savannas. J Appl Ecol 30:143–155. doi:10.2307/2404278

    Article  Google Scholar 

  • Bradstreet RB (1965) The Kjeldahl method for organic nitrogen. Academic Press, New-York

    Google Scholar 

  • Caro TM, Sungula M, Schwartz MW, Bella EM (2005) Recruitment of Pterocarpus angolensis in the wild. For Ecol Manag 219:169–175. doi:10.1016/j.foreco.2005.07.004

    Article  Google Scholar 

  • Dean WRJ, Milton SJ, Jeltsch F (1999) Large trees, fertile islands, and birds in arid savanna. J Arid Environ 41:61–78. doi:10.1006/jare.1998.0455

    Article  Google Scholar 

  • du Toit JT, Cumming DHM (1999) Functional significance of ungulate diversity in African savannas and the ecological implications of the spread of pastoralism. Biodivers Conserv 8:1643–1661. doi:10.1023/A:1008959721342

    Article  Google Scholar 

  • du Toit JT, Rogers KH, Biggs HC (2003) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington

    Google Scholar 

  • Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252. doi:10.2307/1266041

    Article  Google Scholar 

  • East RM, Felker P (1993) Forage production and quality of 4 perennial grasses grown under and outside canopies of mature Prosopis glandulosa Torr.var. glandulosa (mesquite). Agrofor Syst 22:91–110. doi:10.1007/BF00705139

    Article  Google Scholar 

  • Eckhardt HC, van Wilgen BW, Biggs HC (2000) Trends in woody vegetation cover in the Kruger National Park, South Africa, between 1940 and 1998. Afr J Ecol 38:108–115. doi:10.1046/j.1365-2028.2000.00217.x

    Article  Google Scholar 

  • Fryxell JM (1991) Forage quality and aggregation by large herbivores. Am Nat 138:478–498. doi:10.1086/285227

    Article  Google Scholar 

  • Gertenbach WPD (1983) Landscapes of the Kruger National Park. Koedoe 26:9–12

    Google Scholar 

  • Grant CC, Scholes MC (2006) The importance of nutrient hot-spots in the conservation and management of large wild mammalian herbivores in semi-arid savannas. Biol Conserv 130:426–437. doi:10.1016/j.biocon.2006.01.004

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2004) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Persp Plant Ecol 1:92–120

    Article  Google Scholar 

  • Holdo RM (2003) Woody plant damage by African elephants in relation to leaf nutrients in western Zimbabwe. J Trop Ecol 19:189–196. doi:10.1017/S0266467403003213

    Article  Google Scholar 

  • Jackson LE, Strauss RB, Firestone MK, Bartolome JW (1990) Influence of tree canopies on grassland productivity and nitrogen dynamics in deciduous oak savanna. Agric Ecosyst Environ 32:89–105. doi:10.1016/0167-8809(90)90126-X

    Article  Google Scholar 

  • Jacobs OS, Biggs R (2002) The impact of the African elephant on marula trees in the Kruger National Park. S Afr J Wildl Res 32:13–22

    Google Scholar 

  • Jeltsch F, Milton S, Dean WR, van Rooyen N (1997) Simulated pattern formation around artificial waterholes in the semi-arid Kalahari. J Veg Sci 8:177–188

    Article  Google Scholar 

  • Levick S, Rogers K (2008) Patch and species specific responses of savanna woody vegetation to browser exclusion. Biol Conserv 14:1489–1498

    Google Scholar 

  • Ludwig F, de Kroon H, Prins HHT, Berendse F (2001) Effects of nutrients and shade on tree-grass interactions in an East African savanna. J Veg Sci 12:579–588. doi:10.2307/3237009

    Article  Google Scholar 

  • Ludwig F, Dawson TE, de Kroon H, Berendse F, Prins HHT (2003) Hydraulic lift in Acacia tortilis trees on an East African savanna. Oecologia 134:293–300

    CAS  PubMed  Google Scholar 

  • Ludwig F, de Kroon H, Berendse F, Prins HHT (2004) The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol 170:93–105. doi:10.1023/B:VEGE.0000019023.29636.92

    Article  Google Scholar 

  • McNaugthon S (1984) Grazing lawns: animals in herds, plant form and coevolution. Am Nat 124:863–886. doi:10.1086/284321

    Article  Google Scholar 

  • Ong CK, Marshall C, Saoar GR (1978) The physiology of tiller death in grasses. 2. Causes of tiller death in a grass sward. Grass Forage Sci 22:205–211. doi:10.1111/j.1365-2494.1978.tb00821.x

    Google Scholar 

  • Power IL, Thorrold BS, Balks MR (2003) Soil properties and nitrogen availability in silvopastoral plantings of Acacia melanoxylon in North Island, New Zealand. Agrofor Syst 57:225–237. doi:10.1023/A:1024838311287

    Article  Google Scholar 

  • Rietkerk M, Ketner P, Burger J, Hoorens B, Olff H (2000) Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa. Plant Ecol 148:207–224. doi:10.1023/A:1009828432690

    Article  Google Scholar 

  • Riginos C, Grace JB (2008) Savanna tree density, herbivores, and the herbaceous community: bottom-up vs. top-down effects. Ecology 89:2228–2238. doi:10.1890/07-1250.1

    Article  PubMed  Google Scholar 

  • Ripple WJ, Beschta RL (2004) Wolves and the ecology of fear: can predation risk structure ecosystems? BioSci 54:755–766

    Article  Google Scholar 

  • Sankaran M, Ratnam J, Hanan NP (2004) Tree-grass coexistence in savannas revisited—insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490. doi:10.1111/j.1461-0248.2004.00596.x

    Article  Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544. doi:10.1146/annurev.ecolsys.28.1.517

    Article  Google Scholar 

  • Smit GN (2005) Tree thinning as an option to increase herbaceous yield of an encroached semi-arid savanna in South Africa. BMC Ecol 5:1–15. doi:10.1186/1472-6785-5-4

    Article  Google Scholar 

  • Tobler M, Cochard R, Edwards PJ (2003) The impact of cattle ranching on large-scale vegetation patterns in a coastal savanna in Tanzania. J Appl Ecol 40:430–444. doi:10.1046/j.1365-2664.2003.00816.x

    Article  Google Scholar 

  • Treydte AC, Heitkönig IMA, Prins HHT, Ludwig F (2007) Trees enhance grass layer quality in African savannas of distinct rainfall and soil fertility. Perspect Plant Ecol 8:197–205. doi:10.1016/j.ppees.2007.03.001

    Article  Google Scholar 

  • Treydte AC, Looringh van Beeck F, Ludwig F, Heitkönig IMA (2008) Improved beneath-crown grass quality in South African savannas varying locally and over season. J Veg Sci 19:663–670

    Article  Google Scholar 

  • Venter FJ, Scholes RJ, Eckhardt HC (2003) The abiotic template and its associated vegetation pattern. In: Du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience, ecology and management of savanna heterogeneity. Island Press, Washington, pp 83–129

    Google Scholar 

  • Vesk PA, Westoby M (2001) Predicting plant species’ responses to grazing. J Appl Ecol 38:897–909. doi:10.1046/j.1365-2664.2001.00646.x

    Article  Google Scholar 

  • Vetaas OR (1992) Micro-site effects of trees and shrubs in dry savannas. J Veg Sci 3:337–344. doi:10.2307/3235758

    Article  Google Scholar 

  • Western D, Maitumo D (2004) Woodland loss and restoration in a savanna park: a 20-year experiment. Afr J Ecol 42:111–121. doi:10.1111/j.1365-2028.2004.00506.x

    Article  Google Scholar 

  • Witkowski ETF, Garner RD (2000) Spatial distribution of soil seed banks of three African savanna woody species at two contrasting sites. Plant Ecol 149:91–106. doi:10.1023/A:1009850706843

    Article  Google Scholar 

  • Wong CC (1990) Shade tolerance of tropical forages: a review. In: Shelton HM, Stuer WW (eds) Proceedings of ACIAR. Sanur Beach, Bali, pp 64–69

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall Inc., Simon & Schuster/A Viacom Company, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

We thank SANPARKS and Scientific Services in Skukuza, Kruger National Park, for permitting this research study. The Schimper Stiftung and the DFG (Rückkehr-Stipendium TR 753) provided funding for AC Treydte. We are grateful to the Kruger Park game guards for their help in the field. The detailed comments of two anonymous reviewers improved this manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Treydte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treydte, A.C., Grant, C.C. & Jeltsch, F. Tree size and herbivory determine below-canopy grass quality and species composition in savannahs. Biodivers Conserv 18, 3989–4002 (2009). https://doi.org/10.1007/s10531-009-9694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9694-3

Keywords

Navigation