Effect of characteristics of butterfly species on the accuracy of distribution models in an arid environment

Abstract

Species distribution models show great promise as tools for conservation ecology. However, their accuracy has been shown to vary widely among taxa. There is some evidence that this variation is partly owing to ecological differences among species, which make them more or less easy to model. Here we test the effect of five characteristics of Egyptian butterfly species on the accuracy of distribution models, the first such comparison for butterflies in an arid environment. Unlike most previous studies, we perform independent contrasts to control for species relatedness. We show that range size, both globally and locally, has a negative effect on model accuracy. The results shed light on causes of variation in distribution model accuracy among species, and hence have relevance to practitioners using species distribution models in conservation decision making.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753. doi:10.1111/j.1466-8238.2007.00359.x

    Article  Google Scholar 

  2. Beck J, Kitching IJ (2007) Correlates of range size and dispersal ability: a comparative analysis of sphingid moths from the Indo-Australian tropics. Glob Ecol Biogeogr 16:341–349. doi:10.1111/j.1466-8238.2007.00289.x

    Article  Google Scholar 

  3. Beck J, Kitching IJ, Linsenmair KE (2006) Measuring range sizes of South-East Asian hawkmoths (Lepidoptera: Sphingidae): effects of scale, resolution and phylogeny. Glob Ecol Biogeogr 15:339–348. doi:10.1111/j.1466-822X.2006.00230.x

    Article  Google Scholar 

  4. Berg Å, Gärdenfors U, von Proschwitz T (2004) Logistic regression models for predicting occurrence of terrestrial molluscs in southern Sweden—importance of environmental data quality and model complexity. Ecography 27:83–93. doi:10.1111/j.0906-7590.2004.03553.x

    Article  Google Scholar 

  5. Boone RB, Krohn WB (1999) Modeling the occurrence of bird species: are the errors predictable? Ecol Appl 9:835–848. doi:10.1890/1051-0761(1999)009[0835:MTOOBS]2.0.CO;2

    Article  Google Scholar 

  6. Braby MF, Vila R, Pierce NE (2006) Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zool J Linn Soc 147:238–275

    Google Scholar 

  7. Bro-Jørgensen J (2007) The intensity of sexual selection predicts weapon size in male bovids. Evol Int J Org Evol 61:1316–1326. doi:10.1111/j.1558-5646.2007.00111.x

    Google Scholar 

  8. Brotons L, Thuiller W, Araújo MB et al (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448. doi:10.1111/j.0906-7590.2004.03764.x

    Article  Google Scholar 

  9. Brower AVZ (2000) Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of the wingless gene. Proc R Soc Lond B Biol Sci 267:1201–1211. doi:10.1098/rspb.2000.1129

    Article  CAS  Google Scholar 

  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  11. Carrascal LM, Seoane J, Palomino D et al (2006) Species-specific features affect the ability of census-derived models to map winter avian distribution. Ecol Res 21:681–691. doi:10.1007/s11284-006-0173-y

    Article  Google Scholar 

  12. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  13. Freitas AVL, Brown KS Jr (2004) Phylogeny of the Nymphalidae (Lepidoptera). Syst Biol 53:363–383. doi:10.1080/10635150490445670

    Article  PubMed  Google Scholar 

  14. García-Barros E (2000) Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol J Linn Soc Lond 70:251–284. doi:10.1111/j.1095-8312.2000.tb00210.x

    Article  Google Scholar 

  15. Gaston KJ, Blackburn TM, Greenwood JJD et al (2000) Abundance–occupancy relationships. J Appl Ecol 37(S1):39–59. doi:10.1046/j.1365-2664.2000.00485.x

    Article  Google Scholar 

  16. Gilbert F, Zalat S (2007) The butterflies of Egypt: Atlas, red data listing and conservation. BioMAP, EEAA, Cairo. Available at http://www.nottingham.ac.uk/~plzfg/publicns.htm

  17. Hansen MC, Defries RS, Townshend JRG et al (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1331–1364. doi:10.1080/014311600210209

    Article  Google Scholar 

  18. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  19. Hepinstall JA, Krohn WB, Sader SA (2002) Effects of niche width on the performance and agreement of avian habitat models. In: Scott JM, Heglund PJ, Morrison ML et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington

    Google Scholar 

  20. Hernandez PA, Graham CH, Master LL et al (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785. doi:10.1111/j.0906-7590.2006.04700.x

    Article  Google Scholar 

  21. Hernandez PA, Franke I, Herzog SK et al (2008) Predicting species distributions in poorly-studied landscapes. Biodivers Conserv 17:1353–1366. doi:10.1007/s10531-007-9314-z

    Article  Google Scholar 

  22. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  23. Hunt G, Roy K, Jablonski D (2005) Species-level heritability reaffirmed: a comment on “On the heritability of geographic range sizes”. Am Nat 166:129–135. doi:10.1086/430722

    Article  PubMed  Google Scholar 

  24. Huntley B, Green RE, Collingham YC et al (2004) The performance of models relating species geographical distributions to climate is independent of trophic level. Ecol Lett 7:417–426. doi:10.1111/j.1461-0248.2004.00598.x

    Article  Google Scholar 

  25. Jablonski D (1987) Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360–363. doi:10.1126/science.238.4825.360

    Article  PubMed  Google Scholar 

  26. Kadmon R, Farber O, Danin A (2003) A systematic analysis of factors affecting the performance of climatic envelope models. Ecol Appl 13:853–867. doi:10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2

    Article  Google Scholar 

  27. Karl JW, Svancara LK, Heglund PJ (2002) Species commonness and the accuracy of habitat-relationship models. In: Scott JM, Heglund PJ, Morrison ML et al (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington

    Google Scholar 

  28. Knouft JH, Losos JB, Glor RE et al (2006) Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87(S):29–38

    Article  Google Scholar 

  29. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. doi:10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  30. Luoto M, Pöyry J, Heikkinen RK et al (2005) Uncertainty of bioclimate envelope models based on the geographical distribution of species. Glob Ecol Biogeogr 14:575–584. doi:10.1111/j.1466-822X.2005.00186.x

    Article  Google Scholar 

  31. Maddison WP, Maddison DR (2007) Mesquite: a modular system for evolutionary analysis. Version 2.01. http://mesquiteproject.org

  32. Manel S, Dias JM, Buckton ST et al (1999) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. J Appl Ecol 36:734–747. doi:10.1046/j.1365-2664.1999.00440.x

    Article  Google Scholar 

  33. Marmion M, Luoto M, Heikkinen RK, Thuiller W (2008) The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol Modell. doi:10.1016/j.ecolmodel.2008.10.019

  34. Martins EP (2004) COMPARE, version 4.6b. Computer programs for the statistical analysis of comparative data. http://compare.bio.indiana.edu/

  35. McPherson JM, Jetz W (2007) Effects of species’ ecology on the accuracy of distribution models. Ecography 30:135–151

    Google Scholar 

  36. McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823. doi:10.1111/j.0021-8901.2004.00943.x

    Article  Google Scholar 

  37. Mitchell MS, Lancia RA, Gerwin JA (2001) Using landscape-level data to predict the distribution of birds on a managed forest: effects of scale. Ecol Appl 11:1692–1708. doi:10.1890/1051-0761(2001)011[1692:ULLDTP]2.0.CO;2

    Article  Google Scholar 

  38. Newbold T, Gilbert F, Zalat S et al (2009) Climate-based models of spatial patterns of species richness in Egypt’s butterfly and mammal fauna. J Biogeogr (in press)

  39. Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  40. Pearce J, Ferrier S (2000a) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell 133:225–245. doi:10.1016/S0304-3800(00)00322-7

    Article  Google Scholar 

  41. Pearce J, Ferrier S (2000b) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol Modell 128:127–147. doi:10.1016/S0304-3800(99)00227-6

    Article  Google Scholar 

  42. Pearce J, Ferrier S, Scotts D (2001) An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales. J Environ Manage 62:171–184. doi:10.1006/jema.2001.0425

    Article  CAS  PubMed  Google Scholar 

  43. Pech P, Fric Z, Konvička M et al (2004) Phylogeny of Maculinea blues (Lepidoptera: Lycaenidae) based on morphological and ecological characters: evolution of parasitic myrmecophily. Cladistics 20:362–375. doi:10.1111/j.1096-0031.2004.00031.x

    Article  Google Scholar 

  44. Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267. doi:10.1126/science.285.5431.1265

    Article  CAS  PubMed  Google Scholar 

  45. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st International Conference on Machine Learning. ACM Press, New York

  46. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  47. Pierce NE, Braby MF, Heath A et al (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771. doi:10.1146/annurev.ento.47.091201.145257

    Article  CAS  PubMed  Google Scholar 

  48. Pollock DD, Watt WB, Rashbrook VK et al (1998) Molecular phylogeny for Colias butterflies and their relatives (Lepidoptera : Pieridae). Ann Entomol Soc Am 91:524–531

    CAS  Google Scholar 

  49. Pöyry J, Luoto M, Heikkinen RK et al (2008) Species traits are associated with the quality of bioclimatic models. Glob Ecol Biogeogr 17:403–414. doi:10.1111/j.1466-8238.2007.00373.x

    Article  Google Scholar 

  50. Quinn RM, Gaston KJ, Roy DB (1998) Coincidence in the distributions of butterflies and their foodplants. Ecography 21:279–288. doi:10.1111/j.1600-0587.1998.tb00565.x

    Article  Google Scholar 

  51. R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  52. Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568. doi:10.1111/j.1365-2699.2004.01076.x

    Article  Google Scholar 

  53. Seoane J, Carrascal LM, Alonso CL et al (2005) Species-specific traits associated to prediction errors in bird habitat suitability modelling. Ecol Modell 185:299–308. doi:10.1016/j.ecolmodel.2004.12.012

    Article  Google Scholar 

  54. Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Modell 148:1–13. doi:10.1016/S0304-3800(01)00388-X

    Article  Google Scholar 

  55. VanDer Wal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Modell 220:589–594. doi:10.1016/j.ecolmodel.2008.11.010

    Article  Google Scholar 

  56. Wahlberg N, Weingartner E, Nylin S (2003) Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Mol Phylogenet Evol 28:473–484. doi:10.1016/S1055-7903(03)00052-6

    Article  CAS  PubMed  Google Scholar 

  57. Wahlberg N, Braby MF, Brower AVZ et al (2005) Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc R Soc Lond B Biol Sci 272:1577–1586. doi:10.1098/rspb.2005.3124

    Article  CAS  Google Scholar 

  58. Webb TJ, Gaston KJ (2003) On the heritability of geographic range sizes. Am Nat 161:553–566. doi:10.1086/368296

    Article  PubMed  Google Scholar 

  59. Whittaker RJ, Willis KG, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470. doi:10.1046/j.1365-2699.2001.00563.x

    Article  Google Scholar 

  60. Wintle BA, Elith J, Potts JM (2005) Fauna habitat modelling and mapping: a review and case study in the Lower Hunter Central Coast region of NSW. Austral Ecol 30:719–738. doi:10.1111/j.1442-9993.2005.01514.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Italian Cooperation (Debt Swap) for funding the BioMAP Project, Dr. Mustafa Fouda (Director of the Nature Conservation Sector, EEAA) for facilities and comments on the work, all the BioMAP staff (Ahmed Yakoub, Alaa Awad, Muhammed Sherif, Shama Omran, Shaimaa Esa, Yasmin Safwat, Nahla Ahmed, Esraa Sabre), Dr. Abd El Aal Attia for help during dataset preparation and preliminary analysis. Two anonymous reviewers made valuable comments on an earlier draft of this paper. This work was supported by the Natural Environment Research Council (grant number NER/S/A/2006/14170).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tim Newbold.

Appendix

Appendix

To check that our conclusions were not biased by including species with very small numbers of presence records, we repeated the analyses of the effect of characteristics of species on distribution model accuracy, considering only species with at least 20 unique presence records. See Tables 3 and 4.

Table 3 Results of a set of general linear models testing the effect of species characteristics on the accuracy of species distribution models for 22 Egyptian butterfly species with at least 20 unique presence records, measured using the AUC statistic
Table 4 Results of a set of general linear models testing the effect of species characteristics on the accuracy of species distribution models for 22 Egyptian butterfly species with at least 20 unique presence records, measured as the deviance explained by the models

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Newbold, T., Reader, T., Zalat, S. et al. Effect of characteristics of butterfly species on the accuracy of distribution models in an arid environment. Biodivers Conserv 18, 3629 (2009). https://doi.org/10.1007/s10531-009-9668-5

Download citation

Keywords

  • AUC
  • Ecological characteristics
  • Independent contrasts
  • Lepidoptera
  • Maxent
  • Species distribution models