Skip to main content

The effects of stand structure on ground-floor bryophyte assemblages in temperate mixed forests

Abstract

The effect of tree species composition, stand structure characteristics and substrate availability on ground-floor bryophyte assemblages was studied in mixed deciduous forests of Western Hungary. Species composition, species richness and cover of bryophytes occurring on the soil and logs were analysed as dependent variables. The whole assemblage and functional groups defined on the basis of substrate preference were investigated separately. Substrate availability (open soil, logs) was the most prominent factor in determining species composition, cover and diversity positively, while the litter of deciduous trees had a negative effect on the occurrence of forest floor bryophytes. Besides, bryophyte species richness increased with tree species and stand structural diversity, and for specialist epiphytic and epixylic species log volume was essential. Sapling density and light heterogeneity were influential on bryophyte cover, especially for the dominant terricolous species. Many variables of the forest floor bryophyte community can be estimated efficiently by examining stand structure in the studied region. Selective cutting increasing tree species diversity, stand structural heterogeneity and dead wood volume can maintain higher bryophyte diversity in this region than the shelter-wood system producing even-aged, monodominant, structurally homogenous stands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Andersson LI, Hytteborn H (1991) Bryophytes and decaying wood—a comparison between managed and natural forest. Holarct Ecol 14:121–130

    Google Scholar 

  2. Astrom M, Dynesius M, Hylander K, Nilsson C (2005) Effects of slash harvest on bryophytes and vascular plants in southern boreal forest clear-cuts. J Appl Ecol 42:1194–1202. doi:10.1111/j.1365-2664.2005.01087.x

    Article  Google Scholar 

  3. Aude E, Ejrnaes R (2005) Bryophyte colonisation in experimental microcosms: the role of nutrients, defoliation and vascular vegetation. Oikos 109:323–330. doi:10.1111/j.0030-1299.2005.13268.x

    Article  Google Scholar 

  4. Aude E, Lawesson JE (1998) Vegetation in Danish beech forest: the importance of soil, microclimate and management factors, evaluated by variation partitioning. Plant Ecol 134:53–65. doi:10.1023/A:1009720206762

    Article  Google Scholar 

  5. Aude E, Poulsen RS (2000) Influence of management on the species composition of epiphytic cryptogams in Danish Fagus forest. Appl Veg Sci 3:81–88. doi:10.2307/1478921

    Article  Google Scholar 

  6. Bao WK (2005) Structural features of Polytrichum formosum Hedw. populations along a habitat sequence of cutover restoration in the eastern Tibetan Plateau. Ecol Res 20:701–707. doi:10.1007/s11284-005-0088-z

    Article  Google Scholar 

  7. Bardat J, Aubert M (2007) Impact of forest management on the diversity of corticolous bryophyte assemblages in temperate forests. Biol Conserv 139:47–66. doi:10.1016/j.biocon.2007.06.004

    Article  Google Scholar 

  8. Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  9. Berg A, Ehnstrom B, Gustafsson L, Hallingback T, Jonsell M, Weslien J (1994) Threatened plant, animal, and fungus species in Swedish forests—distribution and habitat associations. Conserv Biol 8:718–731. doi:10.1046/j.1523-1739.1994.08030718.x

    Article  Google Scholar 

  10. Bergamini A, Pauli D, Peintinger M, Schmid B (2001) Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. J Ecol 89:920–929. doi:10.1111/j.1365-2745.2001.00613.x

    Article  Google Scholar 

  11. Boros A (1968) Bryogeographie und Bryoflora Ungarns. Akadémiai Kiadó, Budapest

    Google Scholar 

  12. Brulisauer AR, Bradfield GE, Maze J (1996) Quantifying organisational change after fire in lodgepole pine forest understorey. Can J Bot 74:1773–1782. doi:10.1139/b96-214

    Article  Google Scholar 

  13. Canterello E, Newton AC (2008) Identifying cost-effective indicators to assess the conservation status of forested habitats in Natura 2000 sites. For Ecol Manag 256:815–826

    Article  Google Scholar 

  14. De Las Herras J, Guerra J, Herranz JM (1990) Bryophyte colonization of soils damaged by fire in south–east Spain: a preliminary report on dynamics. J Bryol 16:275–288

    Google Scholar 

  15. Dzwonko Z, Gawronski S (2002) Effect of litter removal on species richness and acidification of a mixed oak-pine woodland. Biol Conserv 106:389–398. doi:10.1016/S0006-3207(01)00266-X

    Article  Google Scholar 

  16. Esseen P-A, Ehnström B, Ericson L, Sjöberg K (1997) Boreal forests. Ecol Bull 46:16–47

    Google Scholar 

  17. Faraway JJ (2005) Linear models with R. Chapman and Hall, London

    Google Scholar 

  18. Fenton NJ, Frego KA (2005) Bryophyte (moss and liverwort) conservation under remnant canopy in managed forests. Biol Conserv 122:417–430. doi:10.1016/j.biocon.2004.09.003

    Article  Google Scholar 

  19. Gignac LD, Dale MRT (2005) Effects of fragment size and habitat heterogeneity on cryptogam diversity in the low-boreal forests of Western Canada. Bryologist 108:50–66. doi:10.1639/0007-2745(2005)108[50:EOFSAH]2.0.CO;2

    Article  Google Scholar 

  20. Grolle R, Long DG (2000) An annotated check-list of the Hepaticae and Anthocerotae of Europe and Macaronesia. J Bryol 22:103–140

    Google Scholar 

  21. Gustafsson L, Eriksson I (1995) Factors of importance for the epiphytic vegetation of aspen (Populus tremula) with special emphasis on bark chemistry and soil chemistry. J Appl Ecol 32:412–424. doi:10.2307/2405107

    Article  Google Scholar 

  22. Gustafsson L, Hallingbäck T (1988) Bryophyte flora and vegetation of managed and virgin conifrous forest in South–West Sweden. Biol Conserv 44:283–300. doi:10.1016/0006-3207(88)90021-3

    Article  Google Scholar 

  23. Hardtle W, von Oheimb G, Westphal C (2003) The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). For Ecol Manag 182:327–338

    Article  Google Scholar 

  24. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–276. doi:10.1016/S0065-2504(08)60121-X

    Article  Google Scholar 

  25. Heilmann-Clausen J, Aude E, Christensen M (2005) Cryptogam communities on decaying deciduous wood—does tree species diversity matter? Biodivers Conserv 14:2061–2078. doi:10.1007/s10531-004-4284-x

    Article  Google Scholar 

  26. Hill MO, Bell N, Bruggeman-Nannaenga MA, Brugues M, Cano MJ, Enroth J, Flatberg KI, Frahm JP, Gallego MT, Gariletti R, Guerra J, Hedenas L, Holyoak DT, Hyvönen J, Ignatov MS, Lara F, Mazimpaka V, Munoz J, Söderström L (2006) An annotated checklist of the mosses of Europe and Macaronesia. J Bryol 28:198–267. doi:10.1179/174328206X119998

    Article  Google Scholar 

  27. Humphrey JW, Davey S, Peace AJ, Ferris R, Harding K (2002) Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biol Conserv 107:165–180. doi:10.1016/S0006-3207(02)00057-5

    Article  Google Scholar 

  28. Jalonen J, Vanha-Majamaa I (2001) Immediate effects of four different felling methods on mature boreal spruce forest understorey vegetation in southern Finland. For Ecol Manag 146:25–34

    Article  Google Scholar 

  29. Jonsson BG, Esseen P-A (1990) Treefall disturbance maintains high bryophyte diversity in a boreal spruce forest. J Ecol 78:924–936. doi:10.2307/2260943

    Article  Google Scholar 

  30. Jonsson BG, Esseen P-A (1998) Plant colonisation in small forest-floor patches: importance of plant group and disturbance traits. Ecography 21:518–526. doi:10.1111/j.1600-0587.1998.tb00443.x

    Article  Google Scholar 

  31. Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood. Lessons for dead wood management. Silva Fenn 39:289–309

    Google Scholar 

  32. Kimmerer RW (2005) Patterns of dispersal and establishment of bryophytes colonizing natural and experimental treefall mounds in northern hardwood forests. Bryologist 108:391–401. doi:10.1639/0007-2745(2005)108[0391:PODAEO]2.0.CO;2

    Article  Google Scholar 

  33. Kruys N, Fries C, Jonsson BG, Lämäs T, Stähl G (1999) Wood inhabiting cryptogams on dead norway spruce (Picea abies) trees in managed Swedish boreal forests. Can J For Res 29:178–186. doi:10.1139/cjfr-29-2-178

    Article  Google Scholar 

  34. Lee TD, La Roi GH (1979) Bryophyte and understory vascular plant beta diversity in relation to moisture and elevation gradients. Vegetatio 40:29–38. doi:10.1007/BF00052012

    Article  Google Scholar 

  35. Legare S, Pare D, Bergeron Y (2005) Influence of aspen on forest floor properties in black spruce-dominated stands. Plant Soil 275:207–220. doi:10.1007/s11104-005-1482-6

    Article  CAS  Google Scholar 

  36. Lemmon PE (1957) A new instrument for measuring forest overstory density. J For 55:667–668

    Google Scholar 

  37. Lengyel-Király I (2008) The effect of stand structure to the epiphytic bryophyte assemblages in forests of Őrség region (West Hungary). Master thesis, Loránd Eötvös University, Budapest

  38. Lesica P, McCune B, Cooper SV, Hong WS (1991) Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Can J Bot 69:1745–1755. doi:10.1139/b91-222

    Article  Google Scholar 

  39. LI-COR Inc (1990) LAI-2000 plant canopy analyzer instruction manual. LI-COR, Lincoln

    Google Scholar 

  40. Lindström K (2003) Wood-living bryophyte species diversity and distribution—differences between small-stream and upland spruce forests. Master thesis, Umea University, Sweden

  41. Lobel S, Snall T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182. doi:10.1111/j.2006.0906-7590.04348.x

    Article  Google Scholar 

  42. Lohmus A, Lohmus P, Vellak K (2007) Substratum diversity explains landscape-scale co-variation in the species-richness of bryophytes and lichens. Biol Conserv 135:405–414. doi:10.1016/j.biocon.2006.10.015

    Article  Google Scholar 

  43. Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  44. Marosi S, Somogyi S (1990) Magyarország kistájainak katasztere I. [Description of Hungarian regions I.] MTA Földrajztudományi Kutató Intézet, Budapest

  45. McCullough HA (1948) Plant succession on fallen logs in a virgin spruce-fir forest. Ecology 29:508–513. doi:10.2307/1932645

    Article  Google Scholar 

  46. McGee GG, Kimmerer RW (2002) Forest age and management effects on epiphytic bryophyte communities in Adirondack northern hardwood forests, New York, USA. Can J For Res 32:1562–1576. doi:10.1139/x02-083

    Article  Google Scholar 

  47. Mills SE, Macdonald SE (2004) Predictors of moss and liverwort species diversity of microsites in conifer-dominated boreal forest. J Veg Sci 15:189–198. doi:10.1658/1100-9233(2004)015[0189:POMALS]2.0.CO;2

    Article  Google Scholar 

  48. Mills SE, Macdonald SE (2005) Factors influencing bryophyte assemblage at different scales in the Western Canadian boreal forest. Bryologist 108:86–100. doi:10.1639/0007-2745(2005)108[86:FIBAAD]2.0.CO;2

    Article  Google Scholar 

  49. Moora M, Daniell T, Kalle H, Liira J, Pussa K, Roosaluste E, Opik M, Wheatley R, Zobel M (2007) Spatial pattern and species richness of boreonemoral forest understorey and its determinants—a comparison of differently managed forests. For Ecol Manag 250:64–70

    Article  Google Scholar 

  50. Ódor P, Standovár T (2001) Richness of bryophyte vegetation in a near-natural and managed beech stands. The effects of management-induced differences in dead wood. Ecol Bull 49:219–229

    Google Scholar 

  51. Ódor P, Standovár T (2002) Substrate specificity and community structure of bryophyte vegetation in a near-natural montane beech forest. Community Ecol 3:39–49. doi:10.1556/ComEc.3.2002.1.5

    Article  Google Scholar 

  52. Ódor P, van Hees AFM (2004) Preferences of dead wood inhabiting bryophytes for decay stage, log size and habitat types in Hungarian beech forests. J Bryol 26:79–95. doi:10.1179/037366804225021038

    Article  Google Scholar 

  53. Ódor P, Heilmann-Clausen J, Christensen M, Aude E, van Dort KW, Piltaver A, Siller I, Veerkamp MT, Walleyn R, Standovár T, van Hees AFM, Kosec J, Matocec N, Kraigher H, Grebenc T (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71. doi:10.1016/j.biocon.2006.02.004

    Article  Google Scholar 

  54. Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys Publishers, Leiden

    Google Scholar 

  55. Rambo TR, Muir PS (1998) Bryophyte species association with coarse woody debris and stand ages in Oregon. Bryologist 101:366–376

    Google Scholar 

  56. Rincon E (1988) The effect of herbaceous litter on bryophyte growth. J Bryol 15:209–217

    Google Scholar 

  57. Rose F (1992) Temperate forest management: its effect on bryophyte and lichen floras and habitats. In: Bates JW, Farmer AM (eds) Bryophytes and Lichens in a changing environment. Clarendon Press, Oxford

    Google Scholar 

  58. Rydgren K, De Kroon H, Okland RH, van Groenendael J (2001) Effects of fine scale disturbances on the demography and population dynamics of the clonal moss Hylocomium splendens. J Ecol 89:395–404. doi:10.1046/j.1365-2745.2001.00552.x

    Article  Google Scholar 

  59. Samuelsson J, Gustafsson L, Ingelög T (1994) Dying and dead trees—a review of their importance for biodiversity. Swedish Threatened Species Unit, Swedish University of Agricultural Science, Uppsala

    Google Scholar 

  60. Schaetzl RJ, Burns SF, Johnson DL, Small TW (1989) Tree uprooting: review on impacts on forest ecology. Vegetatio 79:165–176. doi:10.1007/BF00044908

    Article  Google Scholar 

  61. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  62. Smith AJE (1980) The moss flora of Britain and Ireland. Cambridge University Press, Cambridge

    Google Scholar 

  63. Smith AJE (1982a) Epiphytes and epiliths. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London

    Google Scholar 

  64. Smith AJE (1982b) Bryophyte ecology. Chapman and Hall, London

    Google Scholar 

  65. Snall T, Riberiro PJ, Rydin H (2003) Spatial occurrence and colonisations in patch-tracking metapopulations: local conditions versus dispersal. Oikos 103:566–578. doi:10.1034/j.1600-0706.2003.12551.x

    Article  Google Scholar 

  66. Söderström L (1988a) Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in Northern Sweden. Nord J Bot 8:89–97. doi:10.1111/j.1756-1051.1988.tb01709.x

    Article  Google Scholar 

  67. Söderström L (1988b) The occurence of epixylic bryophyte and lichen species in an old natural and a managed forest stand in Northeast Sweden. Biol Conserv 45:169–178. doi:10.1016/0006-3207(88)90137-1

    Article  Google Scholar 

  68. Sopp L, Kolozs L (2000) Fatömegszámítási táblázatok. [Tables for calculating wood volume.] Állami Erdészeti Szolgálat, Budapest

  69. Startsev N, Lieffers VJ, Landhausser SM (2008) Effects of leaf litter on the growth of boreal feather mosses: implication for forest floor development. J Veg Sci 19:253–260

    Article  Google Scholar 

  70. Statsoft I (2006) Statistica version 7.1. www.statsoft.com

  71. ter Braak CJF, Smilauer P (2002) Canoco 4.5. Biometris, Ceske Budejovice

    Google Scholar 

  72. The R Development Core Team (2008) R. 2.6.2. A language and environment. www.r-project.org

  73. Tímár G, Ódor P, Bodonczi L (2002) The characteristics of forest vegetation of the Őrség landscape protected area. Kanitzia 10:109–136

    Google Scholar 

  74. Turkington R, John E, Krebs CJ, Dale MRT, Nams VO, Boonstra R, Boutin S, Martin K, Sinclair ARE, Smith JNM (1998) The effects of NPK fertilization for nine years on boreal forest vegetation in northwestern Canada. J Veg Sci 9:333–346. doi:10.2307/3237098

    Article  Google Scholar 

  75. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1964–1993) Flora Europea. Cambridge University Press, Cambridge

    Google Scholar 

  76. Vanderporten A, Engels P, Sotiaux A (2004) Trends in diversity and abundance of obligate epiphytic bryophytes in a highly managed landscape. Ecography 27:567–576. doi:10.1111/j.0906-7590.2004.03890.x

    Article  Google Scholar 

  77. Vanha-Majamaa I, Lilja S, Ryoma R, Kotiaho JS, Laaka-Lindberg S, Lindberg H, Puttonen P, Tamminen P, Toivanen T, Kuuluvainen T (2007) Rehabilitating boreal forest structure and species composition in Finland through logging, dead wood creation and fire: the EVO experiment. For Ecol Manag 250:77–88

    Article  Google Scholar 

  78. Vellak K, Ingerpuu N (2005) Management effects on bryophytes in Estonian forests. Biodivers Conserv 14:3255–3263. doi:10.1007/s10531-004-0445-1

    Article  Google Scholar 

  79. Virtanen R, Johnston AE, Crawley MJ, Edwards GR (2000) Bryophyte biomass and species richness on the Park Grass Experiment, Rothamsted, UK. Plant Ecol 151:129–141. doi:10.1023/A:1026533418357

    Article  Google Scholar 

  80. von Oheimb G, Friedel A, Bertsch A, Hardtle W (2007) The effects of windthrow on plant species richness in a Central European beech forest. Plant Ecol 191:47–65. doi:10.1007/s11258-006-9213-5

    Article  Google Scholar 

  81. Weibull H, Rydin H (2005) Bryophyte species richness on boulders: relationship to area, habitat diversity and canopy tree species. Biol Conserv 122:71–79. doi:10.1016/j.biocon.2004.07.001

    Article  Google Scholar 

  82. Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

The authors thank Tibor Standovár for the instruments, Zsuzsa Mag, István Mazál and Ildikó Lengyel-Király for field assistance and János Podani for useful comments on the manuscript. This study was supported by the OTKA NI68218, K79158 and the Directory of Őrség National Park. Péter Ódor is a grantee of the János Bolyai Scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Ódor.

 

 

Appendix 1 List of the recorded bryophyte species, their substrate preference in the region, generalist–specialist type for their substrates and frequency (number of occurrences)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Márialigeti, S., Németh, B., Tinya, F. et al. The effects of stand structure on ground-floor bryophyte assemblages in temperate mixed forests. Biodivers Conserv 18, 2223 (2009). https://doi.org/10.1007/s10531-009-9586-6

Download citation

Keywords

  • Species composition
  • Species richness
  • Diversity
  • Functional groups
  • Forest structure