Skip to main content

The projection of species distribution models and the problem of non-analog climate

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    PubMed  Article  Google Scholar 

  • Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397

    PubMed  Article  Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species: the American bullfrog. Divers Distrib 13:476–485

    Article  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders NJ et al (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Fitzpatrick MC, Gove AD, Sanders NJ et al (2008) Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Glob Chang Biol 14:1–16

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hargrove WW, Hoffman FM (2004) The potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manag 34:S39–S60

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB et al (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Berry PW et al (2002) Species: a spatial evaluation of climate impact on the envelope of species. Ecol Model 154:289–300

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araujo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Peterson AT, Scachetti-Pereira R, Hargrove WW (2004) Potential geographic distribution of Anoplophora glabripennis (Coleoptera:Cerambycidae) in North America. Am Midl Nat 151:170–178

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • R Development Core Team (2008) R foundation for statistical computing, Vienna, Austria

  • Roura-Pascual N, Suarez AV, Gomez C et al (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proc R Soc Lond B Biol Sci 271:2527–2534

    Article  Google Scholar 

  • Saetersdal M, Birks HJB, Peglar SM (1998) Predicting changes in Fennoscandian vascular-plant species richness as a result of future climatic change. J Biogeogr 25:111–122

    Article  Google Scholar 

  • Saxon E, Baker B, Hargrove WW et al (2005) Mapping environments at risk under different global change scenarios. Ecol Lett 8:53–60

    Article  Google Scholar 

  • Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027

    Article  Google Scholar 

  • Thuiller W, Brotons L, Araújo MB et al (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R et al (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:1–5

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbacht JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742

    PubMed  Article  CAS  Google Scholar 

  • Williamson M (2006) Explaining and predicting the success of invading species at different stages of invasion. Biol Invasions 8:1561–1568

    Article  Google Scholar 

Download references

Acknowledgments

MCF acknowledges support from the University of Tennessee in the form of a Yates Dissertation Fellowship and through the Department of Ecology and Evolutionary Biology. WWH thanks the Climate Simulation Group within the Computer Science and Mathematics Division at Oak Ridge National Laboratory for his guest status there. Don Catanzaro provided the aquatic environmental layers used in the Caspian Sea analysis. Comments from Rob Dunn, Rebecca Efroymson, Jack Williams, and three anonymous reviewers improved an early draft of this manuscript. The Australia Research Council (via an ARC grant to JD Majer and RR Dunn) and the US Environmental Protection Agency (via TN & Associates) supported portions of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Fitzpatrick.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fitzpatrick, M.C., Hargrove, W.W. The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18, 2255–2261 (2009). https://doi.org/10.1007/s10531-009-9584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9584-8

Keywords

  • Biological Invasion
  • Advanced Very High Resolution Radiometer
  • Advanced Very High Resolution Radiometer
  • Species Distribution Model
  • Future Climate Scenario