Evidence of wolf dispersal in anthropogenic habitats of the Polish Carpathian Mountains

Abstract

In the course of their maturation, most young wolves leave their natal pack and disperse in search for mating partners, improved food availability and new territories. We investigated whether this dispersal is affected by anthropogenic infrastructure in a 5,000 km² area of the eastern region of the Polish Carpathian Mountains occupied by wolves. A radio-collared male wolf covered 230 km while dispersing through forested hills and densely populated valleys. To test if such dispersal is common in the population we analysed by microsatellite genotyping 39 samples taken from live-trapped wolves or wolves found dead in the study area. Although the obtained genotypes were assigned to different clusters in Bayesian tests, we could not ascribe this structure to landscape features, but rather to shared ancestry of wolf individuals found in distant locations. Moreover, we could not detect a spatial genetic structure in the wolf population, indicating a random occurrence of genotypes within the study area. Observation of the dispersing wolf and the absence of spatial genetic structure imply that wolves are still able to roam the entire area despite high densities of roads and a dense human population. Thus, we concluded that the existing anthropogenic infrastructure does not restrict wolf dispersal in the area and the studied wolves represent a coherent part of the Polish Carpathian wolf population.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aspi J, Roininen E, Ruokenen M et al (2006) Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Mol Ecol 15:1561–1576. doi:10.1111/j.1365-294X.2006.02877.x

    PubMed  Article  CAS  Google Scholar 

  2. Ballard WB, Farnell R, Stephenson RO (1983) Long-distance movements by gray wolves (Canis lupus). Can Field Nat 97:333

    Google Scholar 

  3. Berry O, Tocher MD, Sarre SD (2004) Can assignment tests measure dispersal? Mol Ecol 13:551–561. doi:10.1046/j.1365-294X.2004.2081.x

    PubMed  Article  Google Scholar 

  4. Blanco JC, Cortés Y (2007) Dispersal patterns, social structure and mortality of wolves living in agricultural habitats in Spain. J Zool (Lond) 273:114–124. doi:10.1111/j.1469-7998.2007.00305.x

    Article  Google Scholar 

  5. Blanco JC, Cortés Y, Virgos E (2005) Wolf response to two kinds of barriers in an agricultural habitat in Spain. Can J Zool 83:312–323. doi:10.1139/z05-016

    Article  Google Scholar 

  6. Boitani L (2000) Action plan for the conservation of wolves in Europe (Canis lupus). Nature and environmental series no. 113, convention on the conservation of European wildlife and natural habitats. Council of Europe, Strasburg

    Google Scholar 

  7. Carmichael LE, Nagy JA, Larter NC et al (2001) Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest. Mol Ecol 10:2787–2798

    PubMed  CAS  Google Scholar 

  8. Dixon JD, Oli MD, Wooten MC et al (2007) Genetic consequences of habitat fragmentation and loss: the case of the Florida black bear (Ursus americanus floridanus). Conserv Genet 8:455–464. doi:10.1007/s10592-006-9184-z

    Article  Google Scholar 

  9. Epps CW, Palsbøll PJ, Wehausen JD et al (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038. doi:10.1111/j.1461-0248.2005.00804.x

    Article  Google Scholar 

  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    PubMed  Article  CAS  Google Scholar 

  11. Fabbri E, Miquel C, Lucchini V et al (2007) From the Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population. Mol Ecol 16:1661–1671. doi:10.1111/j.1365-294X.2007.03262.x

    PubMed  Article  CAS  Google Scholar 

  12. Forbes SH, Boyd DK (1996) Genetic variation of naturally colonizing wolves in the central Rocky Mountains. Conserv Biol 10:1082–1090. doi:10.1046/j.1523-1739.1996.10041082.x

    Article  Google Scholar 

  13. Forbes SH, Boyd DK (1997) Genetic structure and migration in native and reintroduced Rocky Mountain wolf populations. Conserv Biol 11:1226–1234. doi:10.1046/j.1523-1739.1997.96296.x

    Article  Google Scholar 

  14. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231. doi:10.1146/annurev.ecolsys.29.1.207

    Article  Google Scholar 

  15. Fritts SH (1983) Record dispersal by a wolf from Minnesota. J Mammal 64:166–167. doi:10.2307/1380772

    Article  Google Scholar 

  16. Fritts SH, Mech LD (1981) Dynamics, movements and feeding ecology of a newly protected wolf population in north-western Minnesota. Wildl Monogr 80:79

    Google Scholar 

  17. Fritts SH, Stephenson RO, Hayes RD (2003) Wolves and humans. In: Mech LD, Boitani L et al (eds) Wolves, ecology and conservation. The University of Chicago Press, Chicago

    Google Scholar 

  18. Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2490. doi:10.1111/j.1365-294X.2004.02244.x

    PubMed  Article  CAS  Google Scholar 

  19. Gerlach G, Musolf K (2000) Fragmentation of landscape as a cause for genetic subdivision of bank vole populations. Conserv Biol 14:1–10. doi:10.1046/j.1523-1739.2000.98519.x

    Article  Google Scholar 

  20. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Updated from Goudet J (1995) FSTAT (vers. 1.2) a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  21. Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic differentiation. The correlated allele frequencies model revisited. Bioinformatics 24:2222–2228. doi:10.1093/bioinformatics/btn419

    PubMed  Article  CAS  Google Scholar 

  22. Guillot G, Estoup A, Mortier F et al (2005a) A spatial statistical model for landscape genetics. Genetics 170:1261–1280. doi:10.1534/genetics.104.033803

    PubMed  Article  CAS  Google Scholar 

  23. Guillot G, Mortier F, Estoup A (2005b) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:708–711. doi:10.1111/j.1471-8286.2005.01031.x

    Article  CAS  Google Scholar 

  24. Guillot G, Santos F, Estoup A (2008) Analysing georeferenced populations genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24:1406–1407. doi:10.1093/bioinformatics/btn136

    PubMed  Article  CAS  Google Scholar 

  25. Gula R (2008a) Legal protection of wolves in Poland: implications for the status of the population. Eur J Wildl Res 54:163–170. doi:10.1007/s10344-007-0129-8

    Article  Google Scholar 

  26. Gula R (2008b) Wolf depredation on domestic animals in Polish Carpathian Mountains. J Wildl Manag 72:283–289. doi:10.2193/2006-368

    Article  Google Scholar 

  27. Gula R, Krzakiewicz H, Niemczyk J et al (2002) Wolf and lynx census in Regional Directorate of State Forest of Krosno, Bieszczadzki National Park, and Magurski National Park. Rocz Bieszczadzkie 10:373–389

    Google Scholar 

  28. Hausknecht R, Gula R, Pirga B et al (2007) Urine—a source for non-invasive genetic monitoring in wildlife. Mol Ecol Notes 2:208–212. doi:10.1111/j.1471-8286.2006.01622.x

    Article  CAS  Google Scholar 

  29. Hedrick PW (2005) Genetics of populations, 3rd edn. Jones and Bartlett Publishers, Inc., Sudbury, MA, USA

    Google Scholar 

  30. Hogan B, Constantini F, Lacey E (1986) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  31. Jaeger JGA (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol 15:115–130. doi:10.1023/A:1008129329289

    Article  Google Scholar 

  32. Jędrzejewski W, Niedziałkowska M, Mysłajek R et al (2005) Habitat selection by wolves Canis lupus in the uplands and Mountains of southern Poland. Acta Theriol (Warsz) 50:417–428

    Google Scholar 

  33. Keller I, Largiader CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc Lond B 270:417–423. doi:10.1098/rspb.2002.2247

    Article  CAS  Google Scholar 

  34. Keller I, Excoffier L, Largiader CR (2005) Estimation of effective population size and detection of a recent population decline coinciding with habitat fragmentation in a ground beetle. J Evol Biol 18:90–100. doi:10.1111/j.1420-9101.2004.00794.x

    PubMed  Article  CAS  Google Scholar 

  35. Kojola I, Aspi J, Hakala A et al (2006) Dispersal in an expanding wolf population in Finland. J Mammal 87:281–286. doi:10.1644/05-MAMM-A-061R2.1

    Article  Google Scholar 

  36. Kuehn R, Hindenlang KE, Holzgang O et al (2007) Genetic effect of transportation infrastructure on roe deer populations (Capreolus capreolus). J Hered 98:13–22. doi:10.1093/jhered/esl056

    PubMed  Article  CAS  Google Scholar 

  37. Liberg O, Andren H, Pedersen H (2005) Severe inbreeding in a wild wolf (Canis lupus) population. Biol Lett 1:17–20. doi:10.1098/rsbl.2004.0266

    PubMed  Article  CAS  Google Scholar 

  38. Linnel JDC, Broseth H, Solberd EJ et al (2005) The origins of the southern Scandinavian wolf Canis lupus population: potential for natural immigration in relation to dispersal distances, geography and Baltic ice. Wildl Biol 11:383–391. doi:10.2981/0909-6396(2005)11[383:TOOTSS]2.0.CO;2

    Article  Google Scholar 

  39. Lucchini V, Fabbri E, Marucco F et al (2002) Non-invasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Mol Ecol 11:857–868. doi:10.1046/j.1365-294X.2002.01489.x

    PubMed  Article  CAS  Google Scholar 

  40. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  41. Mech LD (1989) Wolf population survival in an area of high road density. Am Midl Nat 121:387–389. doi:10.2307/2426043

    Article  Google Scholar 

  42. Mech LD, Boitani L (2003) Wolf social ecology. In: Mech LD, Boitani L (eds) Wolves, ecology and conservation. The University of Chicago Press, Chicago

    Google Scholar 

  43. Merril SB, Mech LD (2000) Details of extensive movements by Minnesota wolves. Am Midl Nat 144:428–433. doi:10.1674/0003-0031(2000)144[0428:DOEMBM]2.0.CO;2

    Article  Google Scholar 

  44. Messier F (1985) Solitary living and extra-territorial movements of wolves in relation to social status and prey abundance. Can J Zool 63:239–245

    Article  Google Scholar 

  45. Mladenoff D, Sickley TA, Haight RG et al (1995) A regional landscape analysis and prediction of favourable gray wolf habitat in the northern Great Lakes region. Conserv Biol 9:279–294. doi:10.1046/j.1523-1739.1995.9020279.x

    Article  Google Scholar 

  46. Mladenoff D, Sickley TA, Wydeven AP (1999) Predicting gray wolf landscape recolonization: logistic regressions models vs. new field data. Ecol Appl 9:37–44. doi:10.1890/1051-0761(1999)009[0037:PGWLRL]2.0.CO;2

    Article  Google Scholar 

  47. Olivier M, Breen M, Binns M et al (1999) Localization and characterization of nucleotide sequences from the canine Y chromosome. Chromosome Res 10:223–233. doi:10.1023/A:1009203500926

    Article  Google Scholar 

  48. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  49. Pilot M, Jedrzejewski W, Branicki W et al (2006) Ecological factors influence population genetic structure of European grey wolves. Mol Ecol 15:4533–4553. doi:10.1111/j.1365-294X.2006.03110.x

    PubMed  Article  CAS  Google Scholar 

  50. Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multi-locus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  51. Raymond M, Rousset F (1995) GENEPOP version 1.2: population genetic software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  52. Riley SPD, Pollinger JP, Sauvajot RM et al (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741. doi:10.1111/j.1365-294X.2006.02907.x

    PubMed  Article  CAS  Google Scholar 

  53. Salvatori V, Corsi F, Milton EJ et al. (2002) Use of satellite images for regional modelling of conservation areas for wolves in the Carpathian Mountains, Central Europe. In: Information for sustainability and development. Proceedings of the 29th international symposium on remote sensing of environment, Buenos Aires

  54. Sundqvist AK, Ellegren H, Olivier M et al (2001) Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers. Mol Ecol 10:1959–1966

    PubMed  Article  CAS  Google Scholar 

  55. Theuerkauf J, Gula R, Pirga B et al (2007) Human impact on wolf activity in the Bieszczady Mountains, SE Poland. Ann Zool Fenn 44:225–231

    Google Scholar 

  56. Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30. doi:10.1046/j.1523-1739.2000.99084.x

    Article  Google Scholar 

  57. Tsunoda H, Gula R, Theuerkauf J et al (2008) How does parental role influence the activity and movements of breeding wolves? J Ethol 27:185–189. doi:10.1007/s10164-008-0106-z

    Article  Google Scholar 

  58. Valiere N, Fumagalli L, Gielly L et al (2003) Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years. Anim Conserv 6:83–92. doi:10.1017/S1367943003003111

    Article  Google Scholar 

  59. Vilà C, Sundqvist AK, Flagstad O et al (2003) Rescue of severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B Biol Sci 270:91–97. doi:10.1098/rspb.2002.2184

    Article  Google Scholar 

  60. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256. doi:10.1046/j.1365-294X.2001.01185.x

    PubMed  Article  CAS  Google Scholar 

  61. Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    PubMed  CAS  Google Scholar 

  62. Webster R, Holt S, Avis C (2001) The status of the Carpathians. Report of the carpathian ecoregion initiative, WWF, Vienna, Austria

Download references

Acknowledgments

This study was performed within the scope of the Bieszczady Wolf Project in the Polish Carpathians. Field work was funded by the Polish National Committee for Scientific Research (KBN 6P04F 006), and the Museum and Institute of Zoology, Polish Academy of Sciences. The genetic work was financed by the Molecular Zoology Unit, TU Muenchen. We thank J. Amarowicz, M. Bajda, B. Budzyn, S. Kaczor, R. Kapuściński, Z. Kopczak, A. Koszler, G. Łukacijewski, J. Mazur, R. Paszkiewicz, A. Pawlak, B. Pirga, J. Polityński, S. Stąpor, M. Szkutnik, W. Śmietana and T. Zając for helping to collect the samples. We thank S. Drevet, M. Januszczak and B. Pirga for assistance in radio-telemetry, B. Pirga and J. Theuerkauf for help in GIS analysis and B. Suppan for support in the lab. We also thank U. Kuehn and two anonymous reviewers for revisions of an earlier version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roman Gula.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gula, R., Hausknecht, R. & Kuehn, R. Evidence of wolf dispersal in anthropogenic habitats of the Polish Carpathian Mountains. Biodivers Conserv 18, 2173 (2009). https://doi.org/10.1007/s10531-009-9581-y

Download citation

Keywords

  • Wolf
  • Canis lupus
  • Anthropogenic habitats
  • Barriers
  • Dispersal
  • Habitat fragmentation
  • Microsatellites
  • Molecular genetics