Skip to main content

Advertisement

Log in

Key Neotropical ecoregions for conservation of terrestrial vertebrates

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Conservation planning analyses show a striking progression from endeavors targeted at single species or at individual sites, to the systematic assessment of entire taxa at large scales. These, in turn, inform wide-reaching conservation policies and financial investments. The latter are epitomized by global-scale prioritization frameworks, such as the Biodiversity Hotspots. We examine the entire Neotropical region to identify sets of areas of high conservation priority according to terrestrial vertebrate distribution patterns. We identified a set of 49 ecoregions in which 90, 82 and 83%, respectively of total, endemic and threatened vertebrates are represented. A core subset of 11 ecoregions captured 55, 27 and 38% of these groups. The Neotropics hold the largest remaining wilderness areas in the world, and encompass most of the tropical ecosystems still offering significant options for successful broad-scale conservation action. Our analysis helps to elucidate where conservation is likely to yield best returns at the ecoregion scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andelman S, Ball I, Davis F et al. (1999) SITES v. 1.0: an analytical toolbox for designing ecoregional conservation portfolios. Technical report, The Nature Conservancy. http://www.biogeog.ucsb.edu/projects/tnc/toolbox.html. Cited 10 Sep 2006

  • Balmford A (1998) On hotspots and the use of indicators for reserve selection. Trends Ecol Evol 13:409

    Article  Google Scholar 

  • Balmford A, Bruner A, Cooper P et al (2002) Economic reasons for conserving wild nature. Science 297:950–953

    Article  PubMed  CAS  Google Scholar 

  • Becker CG, Loyola RD (2008) Extinction risk assessments at the population and species level: implications for amphibian conservation. Biodivers Conserv 17:2297–2304

    Article  Google Scholar 

  • Bini LM, Diniz-Filho JAF, Rangel TFLVB et al (2006) Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers Distrib 12:475–482

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB et al (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  PubMed  CAS  Google Scholar 

  • Cabeza M, Moilanen A (2001) Design of reserve networks and the persistence of biodiversity. Trends Ecol Evol 16:242–248

    Article  PubMed  Google Scholar 

  • Cardillo M, Mace GM, Gittleman JL et al (2006) Latent extinction risk and the future battlegrounds of mammal conservation. Proc Natl Acad Sci USA 103:4157–4161

    Article  PubMed  CAS  Google Scholar 

  • Ceballos G, Ehrlich PR (2006) Global mammal distributions, biodiversity hotspots, and conservation. Proc Natl Acad Sci USA 103:19374–19379

    Article  PubMed  CAS  Google Scholar 

  • Ceballos G, Ehrlich PR, Soberon J et al (2005) Global mammal conservation: What must we manage? Science 309:603–607

    Article  PubMed  CAS  Google Scholar 

  • Cowling RM, Pressey RL, Rouget M et al (2003) A conservation plan for a global biodiversity hotspot—the Cape Floristic region, South Africa. Biol Conserv 112:191–216

    Article  Google Scholar 

  • Csuti B, Polasky S, Williams PH et al (1997) A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. Biol Conserv 80:83–97

    Article  Google Scholar 

  • Davis FW, Costello C, Stoms D (2006) Efficient conservation in a utility-maximization framework. Ecol Soc 11. Available http://www.ecologyandsociety.org/vol11/iss11/art33/

  • Dinerstein E (1995) A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. WWF and the World Bank, Washington, DC

    Google Scholar 

  • Ferrier S, Pressey RL, Barrett TW (2000) A new predictor of the irreplaceability of areas for achieving a conservation goal, its application to real-world planning, and a research agenda for further refinement. Biol Conserv 93:303–325

    Article  Google Scholar 

  • Field R, Hawkins BA, Cornell HV et al (2008) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Gibbons JW, Scott DE, Ryan TJ et al (2000) The global decline of reptiles, Deja Vu amphibians. Bioscience 50:653–666

    Article  Google Scholar 

  • Grenyer R, Orme CDL, Jackson SF et al (2006) Global distribution and conservation of rare and threatened vertebrates. Nature 444:93–96

    Article  PubMed  CAS  Google Scholar 

  • Groves C (2003) Drafting a conservation blueprint: a practitioner’s guide to planning for biodiversity. Island Press, Washington

    Google Scholar 

  • Howard PC, Viskanic P, Davenport TRB et al (1998) Complementarity and the use of indicator groups for reserve selection in Uganda. Nature 394:472–475

    Article  CAS  Google Scholar 

  • Justus J, Fuller T, Sarkar S (2008) Influence of representation targets on the total area of conservation-area networks. Conserv Biol doi:10.1111/j.1523.1739.2008.00928.x

  • Lamoreux JF, Morrison JC, Ricketts TH et al (2006) Global tests of biodiversity concordance and the importance of endemism. Nature 440:212–214

    Article  PubMed  CAS  Google Scholar 

  • Loyola RD, Kubota U, Lewinsohn TM (2007) Endemic vertebrates are the most effective surrogates for identifying conservation priorities among Brazilian ecoregions. Divers Distrib 13:389–396

    Article  Google Scholar 

  • Loyola RD, Oliveira G, Diniz-Filho JAF et al (2008a) Conservation of Neotropical carnivores under different prioritizations scenarios: mapping species traits to minimize conservation conflicts. Divers Distrib 14:949–960

    Article  Google Scholar 

  • Loyola RD, Becker CG, Kubota U et al (2008b) Hung out to dry: choice of priority ecoregions for conserving threatened Neotropical anurans depends on life-history traits. PLoS ONE 3(5):e2120. doi:10.1371/journal.pone.0002120

    Article  PubMed  CAS  Google Scholar 

  • Mace GM, Balmford A, Boitani L et al (2000) It’s time to work together and stop duplicating conservation efforts. Nature 405:393

    Article  PubMed  CAS  Google Scholar 

  • Mace GM, Possingham HP, Learder-Williams N (2007) Prioritizing choices in conservation. In: Macdonald DW, Service K (eds) Key topics in conservation biology, 1st edn. Blackwell, Oxford

    Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  PubMed  CAS  Google Scholar 

  • McKnight MW, White PS, McDonald RI et al (2007) Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biol 5:2424–2432

    Article  CAS  Google Scholar 

  • Mittermeier RA, Mittermeier CG, Brooks TM et al (2003) Wilderness and biodiversity conservation. Proc Natl Acad Sci USA 100:10309–10313

    Article  PubMed  CAS  Google Scholar 

  • Mittermeier RA, Robles-Gil P, Hoffman M et al (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico

    Google Scholar 

  • Moore JL, Balmford A, Brooks T et al (2003) Performance of sub-Saharan vertebrates as indicator groups for identifying priority areas for conservation. Conserv Biol 17:207–218

    Article  Google Scholar 

  • Naidoo R, Balmford A, Ferraro PJ et al (2006) Integrating economic costs into conservation planning. Trends Ecol Evol 21:681–686

    Article  PubMed  Google Scholar 

  • Olson DM, Dinerstein E (2002) The Global 200: priority ecoregions for global conservation. Ann Miss Bot Garden 89:199–224

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Orme CDL, Davies RG, Burgess M et al (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019

    Article  PubMed  CAS  Google Scholar 

  • Possingham H, Ball I, Andelman S (2000) Mathematical methods for identifying representative reserve networks. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer-Verlag, New York

    Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  PubMed  CAS  Google Scholar 

  • Reyers B, van Jaarsveld AS, Kruger M (2000) Complementarity as a biodiversity indicator strategy. Proc R Soc Lond B Bio 267:505–513

    Article  CAS  Google Scholar 

  • Rodrigues ASL, Pilgrim JD, Lamoreux JF et al (2006) The value of the IUCN Red List for conservation. Trends Ecol Evol 21:71–76

    Article  PubMed  Google Scholar 

  • Sarkar S, Margules C (2002) Operationalizing biodiversity for conservation planning. J Biosci 27:299–308

    Article  PubMed  Google Scholar 

  • Silva JF, Farinas MR, Felfili JM et al (2006) Spatial heterogeneity, land use and conservation in the Cerrado region of Brazil. J Biogeogr 33:536–548

    Article  Google Scholar 

  • Smith RJ, Goodman PS, Matthews WS (2006) Systematic conservation planning: a review of perceived limitations and an illustration of the benefits, using a case study from Maputaland, South Africa. Oryx 40:400–410

    Article  Google Scholar 

  • Stattersfield AJ, Crosby MJ, Long AJ, Wege DC (1998) Endemic bird areas of the world. BirdLife International, Cambridge

    Google Scholar 

  • Stuart SN, Chanson JS, Cox NA et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Underwood EC, Shaw MR, Wilson KA et al (2008) Protecting biodiversity when money matters: maximizing return on investment. PLoS ONE 3:e1515. doi:10.1371/journal.pone.0001515

    Article  PubMed  CAS  Google Scholar 

  • Urbina-Cardona JN, Loyola RD (2008) Applying niche-base models to predict endangered-hylid potential distributions: Are neotropical protected areas affective enough? Trop Conserv Sci 1:417–445

    Google Scholar 

  • Williams PH, Burgess ND, Rahbek C (2000) Flagship species, ecological complementarity and conserving the diversity of mammals and birds in sub-Saharan Africa. Anim Conserv 3:249–260

    Article  Google Scholar 

  • Willis KJ, Whittaker RJ (2002) Species diversity—scale matters. Science 295:1245–1248

    Article  PubMed  CAS  Google Scholar 

  • Wilson DE, Reeder DM (eds) (2005) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • World Wildlife Fund (2006) WildFinder: online database of species distributions, version 01.06. http://www.worldwildlife.org/wildfinder. Cited 10 Sep 2006

Download references

Acknowledgments

We thank J.F. Lamoreux, J.A.F. Diniz-Filho, and R. Dirzo for providing suggestions for this manuscript. J. Daltio wrote the computer program for initial complementarity analyses. R.D.L. and U.K. were supported by CNPq (140267/2005-0) and CAPES, respectively. T.M.L. was funded by FAPESP (04/15482-1) and CNPq (306049/2004-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael D. Loyola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loyola, R.D., Kubota, U., da Fonseca, G.A.B. et al. Key Neotropical ecoregions for conservation of terrestrial vertebrates. Biodivers Conserv 18, 2017–2031 (2009). https://doi.org/10.1007/s10531-008-9570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9570-6

Keywords