Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spatial-explicit assessment of current and future conservation options for the endangered Corsican Red Deer (Cervus elaphus corsicanus) in Sardinia

  • 240 Accesses

  • 13 Citations


The Corsican red deer, a sub-species of the European red deer endemic to Sardinia and Corsica, was abundant on both islands at the beginning of 1900. It went extinct in Corsica and reached a minimum of 100 individuals in Sardinia by 1970. Numbers have recovered in Sardinia with more than 1,000 rutting males now present; in the 1980s the deer was reintroduced to Corsica, but the Sardinian population remains fragmented. We developed a potential distribution model in Sardinia using Ecological Niche Factor Analysis. To assess the deer’s protection status we compared the model with the existing and proposed conservation areas and investigated different conservation scenarios in relation to the expansion of its current range and resilience to future changes in land use and predicted trends of desertification. According to our results over 70% of Sardinia is unsuitable to the deer, nevertheless high suitability areas (Mediterranean forests away from main roads) are available throughout the island, particularly in the south and in the central-eastern part. Existing protected areas do not provide for the conservation of the deer but public owned forests, where hunting is prohibited, extend some level of protection, and the protected areas proposed by the Regional administration, if implemented, will be increasing this protection. Three main areas have emerged as conservation priorities to guarantee adequate conservation potential in the future. Our approach provides valuable data to inform conservation policy, and could be easily replicated in other parts of the Mediterranean.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3



Digital terrain model


Ecological niche factor analysis


Environmental sensitive areas


European Union


Site of European Community Importance


Un-weighted Pair Group Method with Arithmetic mean


  1. Acevedo P, Cassinello J, Gortázar C (2007) The Iberian ibex is under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodivers Conserv 16:3361–3376. doi:10.1007/s10531-006-9032-y

  2. Apollonio M (2003) Dama dama Linnaeus, 1758. In: Boitani L, Lovari S, Vigna Taglianti A (eds) Fauna d’Italia. Mammiferi. Calderini, Bologna, pp 294–304

  3. Arbouche HS, Arbouche F (2007) Évaluation de la valuer énergétique des espéces végétales prélevées par le cerf de Barbarie (Cervus elaphus barbarus, Bennet 1833) dans la zone d’El Ayoune (Parc National d’El Kala, Algérie). Rev Ecol (Terre Vie) 62:375–380

  4. Beccu E (1989) Il cervo sardo. Carlo Delfino Editore, Sassari

  5. Beccu E (1993) Consistenza e prospettive di salvaguardia della popolazione di Cervus elaphus corsicanus presente in Sardegna. Supplementi alle Ricerche di Biologia della Selvaggina 21:277–287

  6. Boyce MS, Vernier PR, Nielsen SE et al (2002) Evaluating resource selection functions. Ecol Model 157:281–300. doi:10.1016/S0304-3800(02)00200-4

  7. Buckland ST, Elston DA (1993) Empirical models for the spatial distribution of wildlife. J Appl Ecol 30:478–495. doi:10.2307/2404188

  8. Carranza J, Hidalgo de Trucios SJ, Medina R et al (1991) Space use by red deer in a Mediterranean ecosystem as determined by radio-tracking. Appl Anim Behav Sci 30:363–371. doi:10.1016/0168-1591(91)90141-J

  9. Cassinello J, Acevedo T, Hortal J (2006) Prospects for population expansion of the exotic aoudad (Ammotragus lervia; Bovidae) in the Iberian Peninsula: clues from habitat suitability modeling. Divers Distrib 12:666–678. doi:10.1111/j.1472-4642.2006.00292.x

  10. Chefaoui RM, Hortal J, Lobo JM (2005) Potential distribution modeling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol Conserv 122:327–338. doi:10.1016/j.biocon.2004.08.005

  11. Cilloccu F, Cumer A, Incollu G (2003) La nuova carta dell’uso del suolo 1:25,000 della Regione Sardegna. CARTOgraphica—Il notiziario dei dati geografici 7:7–11

  12. Ciucci P, Catullo G, Boitani L (2009) Do counts of roaring stags index red deer (Cervus elaphus) population size? Wildl Res (in press)

  13. Dubray D (1990) Réintroduction du cerf de Corse (Cervus elaphus corsicanus) en Corse: problématique et état actuel de l’opération. Rev Ecol (Terre Vie) Suppl. 5:135–144

  14. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve predictions of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

  15. Ente Foreste della Sardegna (2005) Censimento 2005 del Cervo sardo. Regione Autonoma della Sardegna. Available at

  16. Ente Foreste della Sardegna (2006) Censimento 2006 del Cervo sardo. Regione Autonoma della Sardegna. Available at

  17. Ente Foreste della Sardegna (2007) Censimento 2007 del Cervo sardo. Regione Autonoma della Sardegna. Available at

  18. European Commission (EU) (2000a) Natura 2000. Managing our heritage. EU, Luxembourg

  19. European Commission (EU) (2000b) Managing Natura 2000 sites. The provisions of article 6 of the ‘Habitats’ Directive 92/43/CEE. EU, Luxembourg

  20. Falcucci A, Maiorano L, Boitani L (2007) Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc Ecol 22:617–631. doi:10.1007/s10980-006-9056-4

  21. Ferrier S, Watson G, Pearce J et al (2002) Extended statistical approaches to modeling spatial pattern in biodiversity in northeast New South Wales I. Species-level modeling. Biodivers Conserv 11:2275–2307. doi:10.1023/A:1021302930424

  22. Gauthier A, Thibault JC (1979) Les Vertébrés terrestres actuels éteints en Corse. Courrier Parc Corse 32:13–44

  23. Giannakopoulos C, Bindi M, Moriondo M et al (2005) Climate change impacts in the Mediterranean resulting from a 2°C global temperature rise. Report for WWF, Gland

  24. Gippoliti S, Amori G (2002) Mammal diversity and taxonomy in Italy: implications for conservation. J Nat Conserv 10:133–143. doi:10.1078/1617-1381-00014

  25. Gippoliti S, Amori G (2006) Ancient introductions of mammals in the Mediterranean basin and their application for conservation. Mamm Rev 36:37–48. doi:10.1111/j.1365-2907.2006.00081.x

  26. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

  27. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. doi:10.1016/S0304-3800(00)00354-9

  28. Guisan A, Edwards TC, Hastie JT (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100. doi:10.1016/S0304-3800(02)00204-1

  29. Hajji GM, Charfi-Cheikrouha F, Lorenzini R et al (2008) Phylogeography and founder effect of the endangered Corsican red deer (Cervus elaphus corsicanus). Biodivers Conserv 17:659–673. doi:10.1007/s10531-007-9297-9

  30. Hirzel AH, Arlettaz R (2003) Modeling habitat suitability for complex species distributions by the environmental-distance geometric mean. Environ Manage 32:614–623. doi:101007/s00267-003-0040-3

  31. Hirzel AH, Helfer V, Métral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121. doi:10.1016/S0304-3800(01)00396-9

  32. Hirzel AH, Hausser J, Chessel D et al (2002) Ecological-niche factor analysis: How to compute habitat- suitability maps without absence data? Ecology 83:2027–2036. doi:10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2

  33. Hirzel AH, Posse B, Oggier PA et al (2004) Ecological requirements of a reintroduced species, with implications for release policy: the Bearded vulture recolonizing the Alps. J Appl Ecol 41:1103–1116. doi:10.1111/j.0021-8901.2004.00980.x

  34. Hirzel AH, La Lay G, Helfer V et al (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152. doi:10.1016/j.ecolmodel.2006.05.017

  35. Hmwe SS, Zachos FE, Eckert I et al (2006) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc Lond 88:691–701. doi:10.1111/j.1095-8312.2006.00653.x

  36. IUCN (2007) Cervus elaphus. In: IUCN 2007. European Mammal Assessment Downloaded on 22 February 2008

  37. Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol Monogr 68:465–485. doi:10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2

  38. Jenkins D (1972) The status of red deer (Cervus elaphus corsicanus) in Sardinia. In: AA.VV. Una vita per la natura. WWF, Camerino

  39. Kidjo N, Feracci G, Bideau E et al (2007) Extirpation and reintroduction of the Corsican red deer Cervus elaphus corsicanus in Corsica. Oryx 41:448–494. doi:10.1017/S0030605307012069

  40. Kosmas C, Kirkby M, Geeson N (eds) (1999) Manual on key indicators of desertification and mapping environmentally sensitive areas to desertification. Medalus Project, ENV4CT950119, Brussels, Downloaded on 12 March 2008

  41. Legré L (1881) La Sardaigne. Impressions de voyage d’un chesseur marseillais. Marseille

  42. Lovari S, Cuccus P, Murgia A et al (2007) Space use, habitat selection and browsing effects of red deer in Sardinia. Ital J Zool (Modena) 74:179–189. doi:10.1080/11250000701249777

  43. Ludt CJ, Schroeder W, Rottmann O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083. doi:10.1016/j.ympev.2003.10.003

  44. Maiorano L, Falcucci A, Boitani L (2006) Gap analysis of terrestrial vertebrates in Italy: priorities for conservation planning in a human dominated landscape. Biol Conserv 133:455–473. doi:10.1016/j.biocon.2006.07.015

  45. Manel S, Dias JM, Buckton ST et al (1999) Alternative methods for predicting species distribution: an illustration with Himalaya river birds. J Appl Ecol 36:734–747. doi:10.1046/j.1365-2664.1999.00440.x

  46. Mantegazza P (1869) Profili e paesaggi della Sardegna. Milano

  47. Masseti M (1998) Holocene endemic and anthropochorous wild mammals on some Italian islands. Anthropozoologica 28:3–20

  48. Mattioli S (2003) Cervus elaphus Linnaeus, 1758. In: Boitani L, Lovari S, Vigna Taglianti A (eds) Fauna d’Italia. Mammiferi. Calderini, Bologna, pp 276–294

  49. Mattioli S, Meneguz PG, Brugnoli A et al (2001) Red deer in Italy: recent changes in range and numbers. Hystrix Italian J Mamm 12:27–35

  50. Motroni A, Canu S, Bianco G et al (2004) Environmentally sensitive areas to desertification, ESAS. Servizio Agrometeorologico Regionale per la Sardegna. Downloaded on 12 March 2008 (in Italian)

  51. Parker V (1999) The use of logistic regression in modeling the distributions of bird species in Swaziland. S Afr J Zool 34:39–47

  52. Pearce J, Ferrier S (2000) An evaluation of alternative algorithm for fitting species distribution models using logistic regression. Ecol Model 128:127–147. doi:10.1016/S0304-3800(99)00227-6

  53. Pereira JMC, Itami RM (1991) GIS-based habitat modeling using logistic multiple regression: a study of Mt. Graham red squirrel. Photogramm Eng Remote Sens 57:1475–1486

  54. Peterson AT, Soberòn J, Sànchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267. doi:10.1126/science.285.5431.1265

  55. Pitra C, Fickel J, Meijaard E et al (2004) Evolution and phylogeny of old world deer. Mol Phylogenet Evol 33:880–895. doi:10.1016/j.ympev.2004.07.013

  56. Touring Club Italiano (1918). Sardegna. Touring Club Italiano, Milano

  57. Vayssières MP, Plant RE, Allen-Diaz BH (2000) Classification trees: an alternative non-parametric approach for predicting species distributions. J Veg Sci 11:679–694. doi:10.2307/3236575

  58. Vigne JD (1992) Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia since the last ice age. Mammal Rev 22:87–96. doi:10.1111/j.1365-2907.1992.tb00124.x

  59. Vigne JD, Valladas H (1996) Small mammal fossil assemblages as indicators of environmental change in northen Corsica during the last 2500 years. J Archeol Soc 23:199–215. doi:10.1006/jasc.1996.0018

  60. Zachos FE, Hartl GB (2006) Island populations, human introductions and the limitations of genetic analyses: the case of the Sardinian red deer. Hum Evol 21:177–183. doi:10.1007/s11598-006-9012-y

  61. Zachos FE, Althoff C, von Steynitz Y et al (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67. doi:10.1007/s10344-006-0065-z

Download references


We acknowledge the Ente Foreste della Regione Sardegna that made the data on deer presence available online. GP would like to thanks S. Lovari, the main responsible for his passion towards fieldwork. We acknowledge G. Amori, P. Ciucci, C. Fassò, S. Lovari, and A. Mortelliti for their useful comments on an earlier version of this manuscript. Last, but not least, thanks to Enea Beccu, who worked throughout all his life to save the Corsican red deer.

Author information

Correspondence to Giuseppe Puddu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Puddu, G., Maiorano, L., Falcucci, A. et al. Spatial-explicit assessment of current and future conservation options for the endangered Corsican Red Deer (Cervus elaphus corsicanus) in Sardinia. Biodivers Conserv 18, 2001–2016 (2009).

Download citation


  • Cervus elaphus corsicanus
  • Conservation
  • Desertification risk
  • ENFA
  • Land-use management
  • Potential suitability