Biodiversity and Conservation

, Volume 18, Issue 4, pp 811–828 | Cite as

Avian communities’ preferences in recently created agricultural wetlands in irrigated landscapes of semi-arid areas

  • David Moreno-MateosEmail author
  • César Pedrocchi
  • Francisco A. Comín
Original Paper


Numerous wetlands have been created spontaneously in the Ebro river basin as a consequence of new irrigation developments over the last 50 years. Water used for irrigating farmland drains into the lower parts of small valleys to form wetlands that are mostly dominated by common reed (Phragmites australis). Bird communities established in these wetlands are still simple, partly due to the lack of management to enable their ecological functions to improve. A knowledge of which environmental features favor these bird communities is essential in order to improve the design of newly created or restored wetlands associated to future irrigation developments. For this purpose, the habitat and vegetation features of 15 wetlands have been sampled. The structure of bird communities (richness, abundance and diversity) was monitored over 3 years during the breeding season and in winter at foraging and nocturnal roosting. The presence of bushes, height of stems and distance from large wetlands (>1 ha) proved to be the most influential variables on bird community structure and on most abundant species during the breeding season. Wetland area and compactness influenced species richness and the most abundant species during winter foraging and roosting. There was a maximum stem height at which only reed-dwelling birds remained. Uncontrolled winter burning had a severe negative effect upon these recently established populations. The ecological functions of newly created or restored wetlands, including those for run-off treatment in agricultural catchments, could be substantially improved taking into account simple guidelines from these results which relate bird community characteristics to wetland features.


Waterbirds Winter birds Mediterranean Phragmites australis Winter burning 



This work was supported by CICYT (REN2003-03040), Aragon Government—D.G. Investigación, Innovación y Tecnología—Research Group on Ecological Restoration (E 61), Instituto de Estudios Altoaragoneses-Diputación de Huesca and Comarca de Los Monegros. We thank Boletas Birdwatching Centre (J. J. Saiz) and D. Cazo for their help during the censuses and J. M. Rey Benayas (Alcalá de Henares University) for his statistical support.


  1. Baldi A (2006) Factors influencing occurrence of passerines in the reed archipelago of Lake Velence (Hungary). Acta Ornithol 41:1–6Google Scholar
  2. Baldi A, Kisbenedek T (1999) Species-specific distribution of reed-nesting passerine birds across reed-bed edges: effects of spatial scale and edge type. Acta Zool Hung 45:97–114Google Scholar
  3. Baldi A, Kisbenedek T (2000) Bird species numbers in an archipelago of reeds at Lake Velence, Hungary. Glob Ecol Biogeogr 9:451–461. doi: 10.1046/j.1365-2699.2000.00205.x CrossRefGoogle Scholar
  4. Batary P, Winkler H, Baldi A (2004) Experiments with artificial nests on predation in reed habitats. J Ornithol 145:59–63. doi: 10.1007/s10336-003-0010-9 CrossRefGoogle Scholar
  5. Brennan EK, Smith LM, Haukos DA, LaGrange TG (2005) Short-term response of wetland birds to prescribed burning in Rainwater Basin wetlands. Wetlands 25:667–674. doi: 10.1672/0277-5212(2005)025[0667:SROWBT]2.0.CO;2 CrossRefGoogle Scholar
  6. Brinson MM, Malvarez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133. doi: 10.1017/S0376892902000085 Google Scholar
  7. Bruland GL, Richardson CJ (2005) Hydrologic, edaphic, and vegetative responses to microtopographic reestablishment in a restored wetland. Restor Ecol 13:515–523. doi: 10.1111/j.1526-100X.2005.00064.x CrossRefGoogle Scholar
  8. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568. doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 CrossRefGoogle Scholar
  9. Celada C, Bogliani G (1993) Breeding bird communities in fragmented wetlands. Boll Zool 60:73–80Google Scholar
  10. Comín FA, Williams WD (1993) Parched continents: our common future? In: Margalef R (ed) A paradigm of planetary problems. Elsevier, Dordrecht, pp 473–527Google Scholar
  11. Comín FA, Romero JA, Hernandez O, Menendez M (2001) Restoration of wetlands from abandoned rice fields for nutrient removal, and biological community and landscape diversity. Restor Ecol 9:201–208. doi: 10.1046/j.1526-100x.2001.009002201.x CrossRefGoogle Scholar
  12. Craig RJ, Beal KG (1992) The influence of habitat variables on marshland bird communities of the Connecticut River estuary. Wilson Bull 104:295–311Google Scholar
  13. Czech HA, Parsons KC (2002) Agricultural wetlands and waterbirds: a review. Waterbirds 25:56–65. doi: 10.1675/1524-4695(2002)025[0056:BEOWTI]2.0.CO;2 CrossRefGoogle Scholar
  14. Davis SK (2004) Area sensitivity in grassland passerines: effects of patch size, patch shape, and vegetation structure on bird abundance and occurrence in southern Saskatchewan. Auk 121:1130–1145. doi: 10.1642/0004-8038(2004)121[1130:ASIGPE]2.0.CO;2 CrossRefGoogle Scholar
  15. Davis SK, Brigham RM, Shaffer TL, James PC (2006) Mixed-grass prairie passerines exhibit weak and variable responses to patch size. Auk 123:807–821. doi: 10.1642/0004-8038(2006)123[807:MPPEWA]2.0.CO;2 CrossRefGoogle Scholar
  16. Diaz M, Carbonell R, Santos T, Telleria JL (1998) Breeding bird communities in pine plantations of the Spanish plateaux: biogeography, landscape and vegetation effects. J Appl Ecol 35:562–574. doi: 10.1046/j.1365-2664.1998.3540562.x CrossRefGoogle Scholar
  17. Eades P, Bardsley L, Giles N, Crofts A (2005) The wetland restoration manual. The Wildlife Trusts, NewarkGoogle Scholar
  18. Fasola M, Ruiz X (1996) The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region. Colon Waterbirds 19:122–128. doi: 10.2307/1521955 CrossRefGoogle Scholar
  19. Foppen RPB, Chardon JP, Liefveld W (2000) Understanding the role of sink patches in source–sink metapopulations: reed Warbler in an agricultural landscape. Conserv Biol 14:1881–1892. doi: 10.1046/j.1523-1739.2000.99022.x CrossRefGoogle Scholar
  20. Forman RTT (1995) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  21. Gabrey SW, Afton AD (2004) Composition of breeding bird communities in Gulf Coast Chenier Plain marshes: effects of winter burning. Southeast Nat 3:173–185. doi: 10.1656/1528-7092(2004)003[0173:COBBCI]2.0.CO;2 CrossRefGoogle Scholar
  22. Gabrey SW, Afton AD, Wilson BC (1999) Effects of winter burning and structural marsh management on vegetation and winter bird abundance in the Gulf Coast Chenier Plain, USA. Wetlands 19:594–606CrossRefGoogle Scholar
  23. Galbrait H, Amerashinge P, Huber-Lee A (2005) The effects of agricultural irrigation on wetland ecosystems in developing countries: a literature review. CA Discussion Paper 1, comprehensive assessment secretariat, international water assessment institute (CGIAR), ColomboGoogle Scholar
  24. Gibbs JP (1993) Importance of small wetlands for the persistence of local-populations of wetland-associated animals. Wetlands 13:25–31Google Scholar
  25. Graveland J (1998) Reed die-back, water level management and the decline of the Great Reed Warbler Acrocephalus arundinaceus in The Netherlands. Ardea 86:187–201Google Scholar
  26. Hawke CJ, José PV (1996) Reedbed management for commercial and wildlife interest. Royal Society for the Protection of the Birds, SandyGoogle Scholar
  27. Honza M, Oien IJ, Moksnes A, Roskaft E (1998) Survival of Reed Warbler Acrocephalus scirpaceus clutches in relation to nest position. Bird Study 45:104–108CrossRefGoogle Scholar
  28. Horn DJ, Phillips ML, Koford RR, Clark WR, Sovada MA, Greenwood RJ (2005) Landscape composition, patch size, and distance to edges: interactions affecting duck reproductive success. Ecol Appl 15:1367–1376. doi: 10.1890/03-5254 CrossRefGoogle Scholar
  29. Houlahan JE, Findlay CS (2004) Estimating the ‘critical’ distance at which adjacent land-use degrades wetland water and sediment quality. Landsc Ecol 19:677–690. doi: 10.1023/B:LAND.0000042912.87067.35 CrossRefGoogle Scholar
  30. Huste A, Selmi S, Boulinier T (2006) Bird communities in suburban patches near Paris: determinants of local richness in a highly fragmented landscape. Ecoscience 13:249–257. doi: 10.2980/i1195-6860-13-2-249.1 CrossRefGoogle Scholar
  31. Ille R, Hoi H (1995) Factors influencing fledgling survival in the Marsh warbler Acrocephalus palustris: food and vegetation density. Ibis 137:586–589. doi: 10.1111/j.1474-919X.1995.tb03270.x CrossRefGoogle Scholar
  32. Isacch JP, Holz S, Ricci L, Martinez MM (2004) Post-fire vegetation change and bird use of a salt marsh in coastal Argentina. Wetlands 24:235–243. doi: 10.1672/0277-5212(2004)024[0235:PVCABU]2.0.CO;2 CrossRefGoogle Scholar
  33. Lemly AD, Kingsford RT, Thompson JR (2000) Irrigated agriculture and wildlife conservation: conflict on a global scale. Environ Manage 25:485–512. doi: 10.1007/s002679910039 PubMedCrossRefGoogle Scholar
  34. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  35. Lissner J, Schierup HH, Comin FA, Astorga V (1999) Effect of climate on the salt tolerance of two Phragmites australis populations. I. Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquat Bot 64:317–333. doi: 10.1016/S0304-3770(99)00060-1 CrossRefGoogle Scholar
  36. Martinez-Vilalta J, Bertolero A, Bigas D, Paquet JY, Martinez-Vilalta A (2002) Habitat selection of passerine birds nesting in the Ebro Delta reedbeds (NE Spain): management implications. Wetlands 22:318–325. doi: 10.1672/0277-5212(2002)022[0318:HSOPBN]2.0.CO;2 CrossRefGoogle Scholar
  37. Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, New YorkGoogle Scholar
  38. Moreno D, Pedrocchi C, Comin FA, Cabezas A (2007) Creating wetlands for the improvement of water quality and landscape restoration in semi-arid zones degraded by intensive agricultural use. Ecol Eng 30:103–111. doi: 10.1016/j.ecoleng.2006.07.001 CrossRefGoogle Scholar
  39. Naugle DE, Higgins KF, Nusser SM, Johnson WC (1999) Scale-dependent habitat use in three species of prairie wetland birds. Landsc Ecol 14:267–276. doi: 10.1023/A:1008088429081 CrossRefGoogle Scholar
  40. Nee S, Cotgreave P (2002) Does the species/area relationship account for the density/area relationship? OIKOS 99:545–551. doi: 10.1034/j.1600-0706.2002.11637.x CrossRefGoogle Scholar
  41. Paracuellos M (2006) Relationships of songbird occupation with habitat configuration and bird abundance in patchy reed beds. Ardea 94:87–98Google Scholar
  42. Paracuellos M, Telleria JL (2004) Factors affecting the distribution of a waterbird community: the role of habitat configuration and bird abundance. Waterbirds 27:446–453. doi: 10.1675/1524-4695(2004)027[0446:FATDOA]2.0.CO;2 CrossRefGoogle Scholar
  43. Pearce-Higgins JW, Grant MC (2006) Relationships between bird abundance and the composition and structure of moorland vegetation. Bird Study 53:112–125Google Scholar
  44. Pedrocchi C (ed) (1998) Ecología de los Monegros. Instituto de Estudios Altoaragoneses and Centro de Desarrollo de Monegros, HuescaGoogle Scholar
  45. Perrins CM (1998) The complete birds of the western Palearctic on CD-Rom. Oxford University Press, OxfordGoogle Scholar
  46. Poulin B, Lefebvre G (2002) Effect of winter cutting on the passerine breeding assemblage in French Mediterranean reedbeds. Biodivers Conserv 11:1567–1581. doi: 10.1023/A:1016866116220 CrossRefGoogle Scholar
  47. Poulin B, Lefebvre G, Mauchamp A (2002) Habitat requirements of passerines and reedbed management in southern France. Biol Conserv 107:315–325. doi: 10.1016/S0006-3207(02)00070-8 CrossRefGoogle Scholar
  48. Pulliam HR, Danielson BJ (1991) Sources, sinks, and habitat selection: a landscape perspective on populations dynamics. Am Nat 137:50–66. doi: 10.1086/285139 CrossRefGoogle Scholar
  49. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  50. Sanchez-Zapata JA, Anadon JD, Carrete M, Gimenez A, Navarro J, Villacorta C et al (2005) Breeding waterbirds in relation to artificial pond attributes: implications for the design of irrigation facilities. Biodivers Conserv 14:1627–1639. doi: 10.1007/s10531-004-0534-1 CrossRefGoogle Scholar
  51. Scheffer M, van Geest GJ, Zimmer K, Jeppesen E, Sondergaard M, Butler MG et al (2006) Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. OIKOS 112:227–231. doi: 10.1111/j.0030-1299.2006.14145.x CrossRefGoogle Scholar
  52. Surmacki A (2005) Habitat use by three Acrocephalus warblers in an intensively used farmland area: the influence of breeding patch and its surroundings. J Ornithol 146:160–166. doi: 10.1007/s10336-005-0075-8 CrossRefGoogle Scholar
  53. Trnka A, Prokop P (2006) Reedbed structure and habitat preference of reed passerines during the post-breeding period. Biologia 61:225–230. doi: 10.2478/s11756-006-0034-8 CrossRefGoogle Scholar
  54. Turner MG, O’neill RV, Gardner RH, Milne BT (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol 3:153–162. doi: 10.1007/BF00131534 CrossRefGoogle Scholar
  55. Van der Putten WH (1997) Die-back of Phragmites australis in European wetlands: an overview of the European research program on reed die-back and progression. Aquat Bot 59:263–275. doi: 10.1016/S0304-3770(97)00060-0 CrossRefGoogle Scholar
  56. Verboom J, Foppen RPB, Chardon JP, Opdam P, Luttikhuizen P (2001) Introducing the key patch approach for habitat network with persistent populations: an example for marshland birds. Biol Conserv 100:89–101. doi: 10.1016/S0006-3207(00)00210-X CrossRefGoogle Scholar
  57. Weller MW (1999) Wetland birds: habitat resources and conservation implications. Cambridge University Press, CambridgeGoogle Scholar
  58. Zedler JB (2003) Wetlands at your service: reducing impacts of agriculture at the watershed scale. Front Ecol Environ 1:65–72Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • David Moreno-Mateos
    • 1
    Email author
  • César Pedrocchi
    • 1
  • Francisco A. Comín
    • 1
  1. 1.Instituto Pirenaico de Ecología (CSIC)JacaSpain

Personalised recommendations