Biodiversity and Conservation

, Volume 17, Issue 13, pp 3289–3305 | Cite as

Threat spots and environmental determinants of red-listed plant, butterfly and bird species in boreal agricultural environments

  • Sonja Kivinen
  • Miska Luoto
  • Risto K. Heikkinen
  • Kimmo Saarinen
  • Terhi Ryttäri
Original Paper


The aims of this study were (1) to examine the geographic distribution of red-listed species of agricultural environments and identify their national threat spots (areas with high diversity of threatened species) in Finland and (2) to determine the main environmental variables related to the richness and occurrence patterns of red-listed species. Atlas data of 21 plant, 17 butterfly and 11 bird species recorded using 10 km grid squares were employed in the study. Generalized additive models (GAMs) were constructed separately for species richness and occurrence of individual species of the three species groups using climate and land cover predictor variables. The predictive accuracy of models, as measured using correlation between the observed and predicted values and AUC statistics, was generally good. Temperature-related variables were the most important determinants of species richness and occurrence of all three taxa. In addition, land cover variables had a strong effect on the distribution of species. Plants and butterflies were positively related to the cover of grasslands and birds to small-scale agricultural mosaic as well as to arable land. Spatial coincidence of threat spots of plants, butterflies and birds was limited, which emphasizes the importance of considering the potentially contrasting environmental requirements of different taxa in conservation planning. Further, it is obvious that the maintenance of various non-crop habitats and heterogeneous agricultural landscapes has an essential role in the preservation of red-listed species of boreal rural environments.


Agriculture Birds Butterflies Modelling Plants Red-listed species Species richness Threat spots 



We thank Prof. Risto Kalliola, Juha Pöyry and an anonymous reviewer for comments on the manuscript. Michael Bailey checked the language of the manuscript. Sonja Kivinen thanks the Geography Graduate School for financial support. Niko Leikola kindly helped with the digitization of plant data. Stefan Fronzek helped in aggregating the climate data for this study.


  1. Akaike H (1974) A new look at statistical model identification. IEEE Trans Automat Contr AU 19:716–722. doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Atauri JA, de Lucio JV (2001) The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape Ecol 16:147–159. doi: 10.1023/A:1011115921050 CrossRefGoogle Scholar
  3. Atlas of Finland (1988a) Biogeography, Nature conservation, Folio 131–143. National Board of Survey and Geographical Society of Finland, HelsinkiGoogle Scholar
  4. Atlas of Finland (1988b) Climate, Folio 131. National Board of Survey and Geographical Society of Finland, HelsinkiGoogle Scholar
  5. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118. doi: 10.1016/S0304-3800(02)00205-3 CrossRefGoogle Scholar
  6. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188. doi: 10.1016/S0169-5347(03)00011-9 CrossRefGoogle Scholar
  7. Ceballos G, Ehrlich PR (2006) Global mammal distributions, biodiversity hot spots, and conservation. Proc Natl Acad Sci USA 103:19374–19379. doi: 10.1073/pnas.0609334103 PubMedCrossRefGoogle Scholar
  8. Cousins SAO, Eriksson O (2001) Plant species occurrences in a rural hemiboreal landscape: effects of remnant habitats, site history, topography and soil. Ecography 24:461–469. doi: 10.1034/j.1600-0587.2001.d01-202.x CrossRefGoogle Scholar
  9. Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. Am Nat 137:27–49. doi: 10.1086/285144 CrossRefGoogle Scholar
  10. Dennis RLH, Hardy PB (1999) Targeting squares for survey: predicting species richness and incidence of species for a butterfly atlas. Glob Ecol Biogeogr 8:443–454. doi: 10.1046/j.1365-2699.1999.00148.x CrossRefGoogle Scholar
  11. Dennis RLH, Sparks TH, Hardy PB (1999) Bias in butterfly distribution maps: the effects of sampling effort. J Insect Conserv 3:33–42. doi: 10.1023/A:1009678422145 CrossRefGoogle Scholar
  12. Dobson AP, Rodriguez JP, Roberts WM, Wilcove DS (1997) Geographic distribution of endangered species in the United States. Science 275:550–553. doi: 10.1126/science.275.5299.550 PubMedCrossRefGoogle Scholar
  13. Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138. doi: 10.1078/1439-1791-00140 CrossRefGoogle Scholar
  14. Fielding A, Bell J (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49. doi: 10.1017/S0376892997000088 CrossRefGoogle Scholar
  15. Gärdenfors U (2001) Classifying threatened species at national versus global levels. Trends Ecol Evol 16:511–516. doi: 10.1016/S0169-5347(01)02214-5 CrossRefGoogle Scholar
  16. Gjerde I, Sætersdal M, Rolstad J, Blom HH, Storaunet KO (2004) Fine-scale diversity and rarity hotspots in northern forests. Conserv Biol 18:1032–1042. doi: 10.1111/j.1523-1739.2004.00526.x CrossRefGoogle Scholar
  17. Griffin PC (1999) Endangered species diversity ‘hot spots’ in Russia and centers of endemism. Biodivers Conserv 8:497–511. doi: 10.1023/A:1008837023242 CrossRefGoogle Scholar
  18. Guisan A, Hofer U (2003) Predicting reptile distributions at the mesoscale: relation to climate and topography. J Biogeogr 30:1233–1243. doi: 10.1046/j.1365-2699.2003.00914.x CrossRefGoogle Scholar
  19. Guisan A, Thuiller W (2005) Predicting species distributions: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  20. Guisan A, Edwards TCJ, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Modell 157:89–100. doi: 10.1016/S0304-3800(02)00204-1 CrossRefGoogle Scholar
  21. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49. doi: 10.1038/23876 CrossRefGoogle Scholar
  22. Härmä P, Teiniranta R, Törmä M, Repo R, Järvenpää E, Kallio M (2004) Production of CORINE2000 land cover data using calibrated LANDSAT 7 ETM satellite image mosaics and digital maps in Finland. In: IEEE international geoscience and remote sensing symposium 20–24 September 2004, vol 4. IEEE, Anchorage, Alaska, pp 2703–2706Google Scholar
  23. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  24. Heikkinen RK, Luoto M, Virkkala R, Rainio K (2004) Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. J Appl Ecol 41:824–835. doi: 10.1111/j.0021-8901.2004.00938.x CrossRefGoogle Scholar
  25. Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, CambridgeGoogle Scholar
  26. Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297:1548–1551. doi: 10.1126/science.1072779 PubMedCrossRefGoogle Scholar
  27. Kerr JT (1997) Species richness, endemism and the choice of areas for conservation. Conserv Biol 11:1094–1100. doi: 10.1046/j.1523-1739.1997.96089.x CrossRefGoogle Scholar
  28. Kerr JT, Cihlar J (2004) Patterns and causes of species endangerment in Canada. Ecol Appl 14:743–753. doi: 10.1890/02-5117 CrossRefGoogle Scholar
  29. Kivinen S (2005) Regional distribution and biodiversity perspectives of Finnish grasslands. Fennia 183:37–56Google Scholar
  30. Kivinen S, Luoto M, Kuussaari M, Helenius J (2006) Multi-species richness of boreal agricultural landscapes: effects of climate, biotope, soil and geographical location. J Biogeogr 33:862–875. doi: 10.1111/j.1365-2699.2006.01433.x CrossRefGoogle Scholar
  31. Krawchuk M, Taylor P (2003) Changing importance of habitat structure across multiple spatial scales for three species of insects. Oikos 103:153–161. doi: 10.1034/j.1600-0706.2003.12487.x CrossRefGoogle Scholar
  32. Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second silent spring? Nature 400:611–612. doi: 10.1038/23127 CrossRefGoogle Scholar
  33. Kuussaari M, Heliölä J, Pöyry J, Saarinen K (2007) Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J Insect Conserv 11:351–366. doi: 10.1007/s10841-006-9052-7 CrossRefGoogle Scholar
  34. Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW et al (2005) Global tests of biodiversity concordance and the importance of endemism. Nature 449:212–214Google Scholar
  35. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam, The NetherlandsGoogle Scholar
  36. Lehmann A, Overton JM, Austin MP (2002) Regression models for spatial prediction: their role for biodiversity and conservation. Biodivers Conserv 11:2085–2092. doi: 10.1023/A:1021354914494 CrossRefGoogle Scholar
  37. Lehmann A, Overton JM, Leathwick JR (2003) GRASP: generalized regression analysis and spatial prediction. Ecol Model 160:165–183. doi: 10.1016/S0304-3800(02)00354-X CrossRefGoogle Scholar
  38. Luoto M, Heikkinen RK, Pöyry J, Saarinen K (2006) Determinants of the biogeographical distribution of butterflies in boreal regions. J Biogeogr 33:1764–1778. doi: 10.1111/j.1365-2699.2005.01395.x CrossRefGoogle Scholar
  39. Maes D, Bauwens D, DeBruyn L, Anselin A, Vermeersch G, Van Landuyt W et al (2005) Species richness coincidence: conservation strategies based on predictive modelling. Biodivers Conserv 14:1345–1364. doi: 10.1007/s10531-004-9662-x CrossRefGoogle Scholar
  40. Maggini R, Lehmann A, Zimmerman NE, Guisan A (2006) Improving generalized regression analysis for spatial predictions of forest communities. J Biogeogr 33:1729–1749. doi: 10.1111/j.1365-2699.2006.01465.x CrossRefGoogle Scholar
  41. Mikkola K, Lafontaine JD, Kononenko VS (1991) Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. Entomol Fenn 2:157–173Google Scholar
  42. Moser D, Dullinger S, Englisch T, Niklfeld H, Plutzar C, Sauberer N et al (2005) Environmental determinants of vascular plant species richness in the Australian Alps. J Biogeogr 32:1117–1127. doi: 10.1111/j.1365-2699.2005.01265.x CrossRefGoogle Scholar
  43. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 PubMedCrossRefGoogle Scholar
  44. Norderhaug A, Ihse M, Pedersen O (2000) Biotope patterns and abundance of meadow plant species in a Norwegian rural landscape. Landscape Ecol 15:201–218. doi: 10.1023/A:1008141400166 CrossRefGoogle Scholar
  45. Oertli S, Müller A, Steiner D, Breitenstein A, Dorn S (2005) Cross-taxon congruence of species diversity and community similarity among three insect taxa in a mosaic landscape. Biol Conserv 126:195–205. doi: 10.1016/j.biocon.2005.05.014 CrossRefGoogle Scholar
  46. Patterson BD (1999) Contingency and determinism in mammalian biogeography: the role of history. J Mammal 80:345–360. doi: 10.2307/1383284 CrossRefGoogle Scholar
  47. Pearce J, Ferrier S, Scotts D (2001) An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales. J Environ Manage 62:171–184. doi: 10.1006/jema.2001.0425 PubMedCrossRefGoogle Scholar
  48. Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298. doi: 10.1111/j.0906-7590.2004.03740.x CrossRefGoogle Scholar
  49. Pitkänen M, Tiainen J (eds) (2001) Biodiversity of agricultural landscapes in Finland. BirdLife Finland Conservation Series, No. 3. Helsinki, FinlandGoogle Scholar
  50. Poudevigne I, Baudry J (2003) The implication of past and present landscape patterns for biodiversity research: introduction and overview. Landscape Ecol 18:223–225. doi: 10.1023/A:1024405014396 CrossRefGoogle Scholar
  51. Pöyry J, Lindgren S, Salminen J, Kuussaari M (2004) Restoration of butterfly and moth communities in semi-natural grasslands by cattle grazing. Ecol Appl 14:1656–1670. doi: 10.1890/03-5151 CrossRefGoogle Scholar
  52. Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337. doi: 10.1038/365335a0 CrossRefGoogle Scholar
  53. Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219. doi: 10.1038/35012221 PubMedCrossRefGoogle Scholar
  54. Pykälä J, Luoto M, Heikkinen RK, Kontula T (2005) Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe. Basic Appl Ecol 6:25–33. doi: 10.1016/j.baae.2004.10.002 CrossRefGoogle Scholar
  55. Rassi P, Alanen A, Kanerva T, Mannerkoski I (eds) (2001) The 2000 red list of Finnish species. The II committee for the monitoring of threatened species in Finland (In Finnish with English summary). Ministry of the Environment and Finnish Environment Institute, Helsinki, FinlandGoogle Scholar
  56. Real R, Barbosa AM, Vargas JM (2006) Obtaining environmental favourability functions from logistic regression. Environ Ecol Stat 13:237–245. doi: 10.1007/s10651-005-0003-3 CrossRefGoogle Scholar
  57. Reid WV (1998) Biodiversity hotspots. Trends Ecol Evol 13:275–280. doi: 10.1016/S0169-5347(98)01363-9 CrossRefGoogle Scholar
  58. Ryttäri T, Kettunen T (eds) (1997) Uhanalaiset kasvimme. Suomen Ympäristökeskus and Kirjayhtymä Oy, TampereGoogle Scholar
  59. Saarinen K (2004) The national butterfly recording scheme in Finland (NAFI): results in 2004. Baptria 29:106–114Google Scholar
  60. Saarinen K, Lahti T, Marttila O (2003) Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000. Biodivers Conserv 12:2147–2159. doi: 10.1023/A:1024189828387 CrossRefGoogle Scholar
  61. Schulman A, Heliölä J, Kuussaari M (2005) Farmland biodiversity on the Åland islands and assessment of the effects of the agri-environmental support scheme. Finn Environ 734:1–210Google Scholar
  62. Skov F, Svenning J-C (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380. doi: 10.1111/j.0906-7590.2004.03823.x CrossRefGoogle Scholar
  63. Swets K (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. doi: 10.1126/science.3287615 PubMedCrossRefGoogle Scholar
  64. Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc Lond B Biol Sci 267:139–145. doi: 10.1098/rspb.2000.0978 CrossRefGoogle Scholar
  65. Tiainen J, Pakkala T (2001) Birds. In: Pitkänen M, Tiainen J (eds) Biodiversity in agricultural landscapes in Finland. BirdLife Finland Conservation Series, No. 3. Helsinki, Finland, pp 33–50Google Scholar
  66. Troumbis AY, Dimitrakopoulos PG (1998) Geographic coincidence of diversity threatspots for three taxa and conservation planning in Greece. Biol Conserv 84:1–6. doi: 10.1016/S0006-3207(97)00093-1 CrossRefGoogle Scholar
  67. Tuhkanen S (1984) A circumboreal system of climatic-phytogeographical regions. Acta Bot Fenn 127:1–50Google Scholar
  68. Turner JRG, Gatehouse CM, Corey CA (1987) Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos 48:195–205. doi: 10.2307/3565855 CrossRefGoogle Scholar
  69. Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314. doi: 10.1016/S0169-5347(03)00070-3 CrossRefGoogle Scholar
  70. Vainio M, Kekäläinen H, Alanen A, Pykälä J (2001) Traditional rural biotopes in Finland. Final report of the nationwide inventory (In Finnish with English summary)Google Scholar
  71. Väisänen RA, Lammi E, Koskimies P (1998) Distribution, numbers and population changes of Finnish breeding birds (In Finnish with English summary). Otavan Kirjapaino, KeuruuGoogle Scholar
  72. van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318. doi: 10.1016/S0006-3207(01)00196-3 CrossRefGoogle Scholar
  73. Venäläinen A, Heikinheimo M (2002) Meteorological data for agricultural applications. Phys Chem Earth 27:1045–1050Google Scholar
  74. Virkkala R, Luoto M, Rainio K (2004) Effects of landscape patterns on agricultural birds in boreal agricultural-forest mosaic: the significance of semi-natural grasslands for the red-listed birds. Ecography 27:273–284. doi: 10.1111/j.0906-7590.2004.03810.x CrossRefGoogle Scholar
  75. Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM et al (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019. doi: 10.1038/nature03850 PubMedCrossRefGoogle Scholar
  76. Williams P, Gibbons D, Margules C, Rebelo A, Humphries C, Pressey R (1996) A comparison of richness hotspots, rarity hotspots and complementary areas for conserving diversity of British birds. Conserv Biol 10:155–174. doi: 10.1046/j.1523-1739.1996.10010155.x CrossRefGoogle Scholar
  77. Woodward FI (1990) The impact of low temperatures in controlling the geographical distribution of plants. Philos Trans R Soc Lond B Biol Sci 326:585–593. doi: 10.1098/rstb.1990.0033 CrossRefGoogle Scholar
  78. Wretenberg J, Lindström Å, Svensson S, Thierfelder T, Pärt T (2006) Population trends of farmland birds in Sweden and England: similar trends but different patterns of agricultural intensification. J Appl Ecol 43:1110–1120. doi: 10.1111/j.1365-2664.2006.01216.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sonja Kivinen
    • 1
  • Miska Luoto
    • 2
    • 3
  • Risto K. Heikkinen
    • 4
  • Kimmo Saarinen
    • 5
  • Terhi Ryttäri
    • 6
  1. 1.Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
  2. 2.Department of GeographyUniversity of OuluOuluFinland
  3. 3.Thule InstituteUniversity of OuluOuluFinland
  4. 4.Research Department, Research Programme for BiodiversityFinnish Environment InstituteHelsinkiFinland
  5. 5.South Karelia Allergy and Environment InstituteTiuruniemiFinland
  6. 6.Expert Services Department, Nature DivisionFinnish Environment InstituteHelsinkiFinland

Personalised recommendations