Skip to main content

Advertisement

Log in

Diet breadth, coexistence and rarity in bumblebees

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Factors that determine the relative abundance of bumblebee species remain poorly understood, rendering management of rare and declining species difficult. Studies of bumblebee communities in the Americas suggest that there are strong competitive interactions between species with similar length tongues, and that this competition determines the relative abundance of species. In contrast, in Europe it is common to observe several short-tongued species coexisting with little or no evidence for competition shaping community structure. In this study we examine patterns of abundance and distribution in one of the most diverse bumblebee communities in Europe, found in the mountains of southern Poland. We quantify forage use when collecting nectar and pollen for 23 bumblebee species, and examine patterns of co-occurrence and niche overlap to determine whether there is evidence for inter-specific competition. We also test whether rarity can be explained by diet breadth. Up to 16 species were found coexisting within single sites, with species richness peaking in mountain pasture at ~1,000 m altitude. Results concur with previous studies indicating that the majority of pollen collected by bumblebees is from Fabaceae, but that some bee species (e.g. B. ruderatus) are much more heavily dependent on Fabaceae than others (e.g. B. lucorum). Those species that forage primarily on Fabaceae tended to have long tongues. In common with studies in the UK, diet breadth was correlated with abundance: rarer species tended to visit fewer flower species, after correcting for differences in sample size. No evidence was found for similarity in tongue length or dietary overlap influencing the likelihood of co-occurrence of species. However, the most abundant species (which co-occurred at most sites) occupied distinct dietary niche space. While species with tongues of similar length tended, overall, to have higher dietary niche overlap, among the group of abundant short-tongued species that commonly co-occurred there was marked dietary differentiation which may explain their coexistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barrow DA, Pickard RS (1984) Size-related selection of food plants by bumblebees. Ecol Entomol 9:369–373. doi:10.1111/j.1365-2311.1984.tb00832.x

    Article  Google Scholar 

  • Brian AD (1954) The foraging of bumble bees Part 1. Foraging behaviour. Bee World 35:61–67

    Google Scholar 

  • Brian AD (1957) Differences in the flowers visited by four species of bumble-bees and their causes. J Anim Ecol 21:223–240. doi:10.2307/1959

    Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington (DC)

    Google Scholar 

  • Carvell C (2002) Habitat use and conservation of bumblebees (Bombus spp.) under different grassland management regimes. Biol Conserv 103:33–49. doi:10.1016/S0006-3207(01)00114-8

    Article  Google Scholar 

  • Colwell RK, Futuyma DJ (1971) On the measurement of niche breadth and overlap. Ecology 52:567–576. doi:10.2307/1934144

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs-high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310. doi:10.1126/science.199.4335.1302

    Article  PubMed  Google Scholar 

  • Edwards M (1998) U.K. Biodiversity Action Plan Bumblebee Working Group Report 1998. Unpublished report for the UK BAP bumblebee working group, Midhurst, UK

  • Fitzpatrick U, Murray TE, Paxton RJ, Breen J, Cotton D, Santorum V et al (2007) Rarity and decline in bumblebees-A test of causes and correlates in the Irish fauna. Biol Conserv 136:185–194. doi:10.1016/j.biocon.2006.11.012

    Article  Google Scholar 

  • Goulson D (2003a) Bumblebees; their behaviour and ecology. Oxford University Press, Oxford, 234 pp

  • Goulson D (2003b) Conserving wild bees for crop pollination. Int J Food Agric Environ 1:142–144

    Google Scholar 

  • Goulson D, Darvill B (2004) Niche overlap and diet breadth in bumblebees; are rare species more specialized in their choice of flowers? Apidologie (Celle) 35:55–64. doi:10.1051/apido:2003062

    Article  Google Scholar 

  • Goulson D, Hanley ME (2004) Distribution and forage use of exotic bumblebees in South Island, New Zealand. N Z J Ecol 28:225–232

    Google Scholar 

  • Goulson D, Stout JC, Hawson SA, Allen JA (1998) Floral display size in comfrey, Symphytum officinale L. (Boraginaceae); relationships with visitation by three bumblebee species and subsequent seed set. Oecologia 113:502–508. doi:10.1007/s004420050402

    Article  Google Scholar 

  • Goulson D, Hughes WOH, Derwent LC, Stout JC (2002a) Colony growth of the bumblebee, Bombus terrestris, in improved and conventional agricultural and suburban habitats. Oecologia 130:267–273

    Google Scholar 

  • Goulson D, Peat J, Stout JC, Tucker J, Darvill B, Derwent LC et al (2002b) Can alloethism in workers of the bumblebee Bombus terrestris be explained in terms of foraging efficiency? Anim Behav 64:123–130. doi:10.1006/anbe.2002.3041

    Article  Google Scholar 

  • Goulson D, Hanley ME, Darvill B, Ellis JS, Knight ME (2005) Causes of rarity in bumblebees. Biol Conserv 122:1–8. doi:10.1016/j.biocon.2004.06.017

    Article  Google Scholar 

  • Goulson D, Hanley ME, Darvill B, Ellis JS (2006) Biotope associations and the decline of bumblebees (Bombus spp.). J Insect Conserv 10:95–103. doi:10.1007/s10841-006-6286-3

    Article  Google Scholar 

  • Graham L, Jones KN (1996) Resource partitioning and per-flower foraging efficiency in 2 bumble bee species. Am Midl Nat 136:401–406. doi:10.2307/2426743

    Article  Google Scholar 

  • Harder LD (1985) Morphology as a predictor of flower choice by bumblebees. Ecology 66:198–210. doi:10.2307/1941320

    Article  Google Scholar 

  • Heinrich B (1976) Resource partitioning among some eusocial insects: bumblebees. Ecology 57:874–889. doi:10.2307/1941054

    Article  Google Scholar 

  • Hobbs GA, Nummi WO, Virostek JF (1961) Food-gathering behaviour of honey, bumble, and leaf-cutter bees (Hymenoptera: Apoidea) in Alberta. Can Entomol 93:409–419

    Article  Google Scholar 

  • Hobbs GA, Nummi WO, Virostek JF (1962) Managing colonies of bumble bees (Hymenoptera: Apidae) for pollination purposes. Can Entomol 94:1121–1132

    Google Scholar 

  • Holm SN (1966) The utilization and management of bumblebees for red clover and alfalfa seed production. Annu Rev Entomol 11:155–182. doi:10.1146/annurev.en.11.010166.001103

    Article  Google Scholar 

  • Howard DC, Watkins JW, Clarke RT, Barnett CL, Stark GJ (2003) Estimating the extent and change in broad habitats in Great Britain. J Environ Manage 67:219–227. doi:10.1016/S0301-4797(02)00175-5

    Article  PubMed  CAS  Google Scholar 

  • Inouye DW (1978) Resource partitioning in bumblebees: experimental studies of foraging behavior. Ecology 59:672–678. doi:10.2307/1938769

    Article  Google Scholar 

  • Inouye DW (1980) The effects of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia 45:197–201. doi:10.1007/BF00346460

    Article  Google Scholar 

  • Jennersten O, Berg L, Lehman C (1988) Phenological differences in pollinator visitation, pollen deposition and seed set in the sticky catchfly Viscaria vulgaris. J Ecol 76:1111–1132. doi:10.2307/2260638

    Article  Google Scholar 

  • Johnson RA (1986) Intraspecific resource partitioning in the bumble bees Bombus ternarius and B. pensylvanicus. Ecology 67:133–138. doi:10.2307/1938511

    Article  Google Scholar 

  • Kells AR, Holland J, Goulson D (2001) The value of uncropped field margins for foraging bumblebees. J Insect Conserv 5:283–291. doi:10.1023/A:1013307822575

    Article  Google Scholar 

  • Kosior A (1995) Changes in the fauna of bumble-bees (Bombus Latr.) and cuckoo-bees (Psithyrus Lep.) of selected regions in southern Poland. In: Banaszak J (ed) Changes in fauna of wild bees in Europe. Pedagogical University, Bydgoszcz, pp 103–111

    Google Scholar 

  • Kosior A, Celary W, Olejnikzak P, Fijal J, Krol W, Solarz W et al (2007) The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of Western and Central Europe. Oryx 41:79–88. doi:10.1017/S0030605307001597

    Article  Google Scholar 

  • Liedloff A (1999) Mantel nonparametric test calculator (version 2.0). Available from http://www.sci.qut.edu.au/NRS/Mantel.htm

  • Magurran AE (1988) Ecological diversity and its management. Princeton University Press, Princeton

    Google Scholar 

  • Manly BFJ (1986) Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res Popul Ecol (Kyoto) 28:201–218. doi:10.1007/BF02515450

    Article  Google Scholar 

  • Osborne JL, Corbet SA (1994) Managing habitats for pollinators in farmland. Asp Appl Biol 40:207–215

    Google Scholar 

  • Peat J, Goulson D (2005) Effects of experience and weather on foraging efficiency and pollen versus nectar collection in the bumblebee, Bombus terrestris. Behav Ecol Sociobiol 58:152–156. doi:10.1007/s00265-005-0916-8

    Article  Google Scholar 

  • Peat J, Tucker J, Goulson D (2005) Does intraspecific size variation in bumblebees allow colonies to efficiently exploit diverse floral resources? Ecol Entomol 30:176–181. doi:10.1111/j.0307-6946.2005.00676.x

    Article  Google Scholar 

  • Prys-Jones OE (1982) Ecological studies of foraging and life history in bumblebees. Ph.D. thesis, University of Cambridge, UK

  • Prys-Jones OE, Corbet SA (1991) Bumblebees. Richmond Publishing Company, Slough

    Google Scholar 

  • Pyke GH (1982) Local geographic distributions of bumblebees near Crested Butte, Colorado: competition and community structure. Ecology 63:555–573. doi:10.2307/1938970

    Article  Google Scholar 

  • Ranta E (1982) Species structure of North European bumblebee communities. Oikos 38:202–209. doi:10.2307/3544020

    Article  Google Scholar 

  • Ranta E (1983) Proboscis length and the coexistence of bumblebee species. Oikos 43:189–196. doi:10.2307/3544768

    Article  Google Scholar 

  • Ranta E, Lundberg H (1980) Resource partitioning in bumblebees: the significance of differences in proboscis length. Oikos 35:298–302. doi:10.2307/3544643

    Article  Google Scholar 

  • Ranta E, Lundberg H, Teräs I (1981) Patterns of resource utilization in two Fennoscandian bumblebee communities. Oikos 36:1–11. doi:10.2307/3544371

    Article  Google Scholar 

  • Ranta E, Tiainen M (1982) Structure in seven bumblebee communities in eastern Finland in relation to resource availability. Holarct Ecol 5:48–54

    Google Scholar 

  • Ranta E, Vepsäläinen K (1981) Why are there so many species? Spatio-temporal heterogeneity and northern bumblebee communities. Oikos 36:28–34. doi:10.2307/3544375

    Article  Google Scholar 

  • Rasmont P (1988) Monographie écologique et zoogéographique des bourdons de France et de Belgique (Hymenoptera, Apidae, Bombinae). Ph.D. thesis, Faculté des Sciences Agronomique de l’Etat, Gembloux, Belgium

  • Rasmont P (1995) How to restore the apoid diversity in Belgium and France? Wrong and right ways, or the end of protection paradigm!. In: Banaszak J (ed) Changes in fauna of wild bees in Europe. Pedagogical University, Bydgoszcz, pp 53–64

    Google Scholar 

  • Simpson GH (1949) Measurement of diversity. Nature 163:688. doi:10.1038/163688a0

    Article  Google Scholar 

  • Tepedino VJ, Stanton NL (1981) Diversity and competition in bee-plant communities on short-grass prairie. Oikos 36:35–44. doi:10.2307/3544376

    Article  Google Scholar 

  • Teräs I (1976) Flower visits of bumblebees, Bombus Latr. (Hymenoptera: Apidae) during one summer. Ann Zool Fenn 13:200–232

    Google Scholar 

  • Teräs I (1985) Food plants and flower visits of bumble-bees (Bombus: Hymenoptera, Apidae) in southern Finland. Acta Zool Fenn 179:1–120

    Google Scholar 

  • Westrich P (1996) Habitat requirements of central European bees and the problems of partial habitats. In: Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) The conservation of bees. Academic Press, London, pp 2–16

    Google Scholar 

  • Westrich P, Schwenninger H-R, Dathe H, Riemann H, Saure C, Voith J et al (1998) Rote Liste der Bienen (Hymenoptera: Apidae). In: Rote Liste Gefährdeter Tiere Deutschlands. Ed. By Bundesamt für Naturschutz. Naturschutz 55, Bonn, Schriftenr. Landschaftspf, pp 119–129

  • Williams PH (1982) The distribution and decline of British bumble bees (Bombus Latr). J Apic Res 21:236–245

    Google Scholar 

  • Williams PH (1985a) A preliminary cladistic investigation of relationships among the bumble bees (Hymenoptera, Apidae). Syst Entomol 10:239–255. doi:10.1111/j.1365-3113.1985.tb00529.x

    Article  Google Scholar 

  • Williams PH (1985b) On the distribution of bumble bees (Hymenoptera, Apidae), with particular regard to patterns within the British Isles. PhD thesis, University of Cambridge, UK, 180pp

  • Williams PH (1986) Environmental change and the distribution of British bumble bees (Bombus Latr.). Bee World 67:50–61

    Google Scholar 

  • Williams PH (1988) Habitat use by bumble bees (Bombus spp.). Ecol Entomol 13:223–237. doi:10.1111/j.1365-2311.1988.tb00350.x

    Article  Google Scholar 

  • Williams PH (1989) Why are there so many species of bumble bees at Dungeness? Bot J Linn Soc 101:31–44. doi:10.1111/j.1095-8339.1989.tb00134.x

    Article  Google Scholar 

  • Williams PH (1991) The bumble bees of the Kashmir Himalaya (Hymenoptera: Apidae, Bombini). Bull Br Mus (Natural History) 60:1–204

    Google Scholar 

  • Williams PH (2005) Does specialization explain rarity and decline among British bumblebees? A response to Goulson et al. Biol Conserv 122:33–43. doi:10.1016/j.biocon.2004.06.019

    Article  Google Scholar 

  • Williams PH, Araujo MB, Rasmont P (2007) Can vulnerability among British bumblebee (Bombus) species be explained by niche position and breadth? Biol Conserv 138:493–505. doi:10.1016/j.biocon.2007.06.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the British Ecological Society. Ben Darvill is funded by the Leverhulme Trust, and Gillian Lye by a NERC studentship. Thanks are due to Dr Paul Williams for comments on the MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave Goulson.

Appendices

Appendix 1

Sample site locations and summaries of bee abundance data per site

Site

Location

Altitude

Total bees

Richness

Simpson’s 1/D

 1

49:28:09N, 20:13:19E

580

57

10

7.785366

 2

49:29:08N, 20:10:26E

630

47

8

3.846975

 3

49:31:36N, 20:20:44E

450

79

10

1.669014

 4

49:32:40N, 20:14:01E

740

73

9

3.102715

 5

49:32:56N, 20:12:43E

1,000

110

7

3.816041

 6

49:33:28N, 20:15:25E

1,130

62

9

5.818462

 7

49:32:44N, 20:15:02E

950

111

7

3.80137

 8

49:31:00N, 20:17:25E

550

55

11

5.265957

 9

49:33:35N, 20:18:23E

660

57

7

3.960298

10

49:30:57N, 20:24:42E

400

107

10

2.12238

11

49:33:09N, 20:26:51E

370

21

6

4.468085

12

49:28:55N, 20:24:18E

450

58

7

3.458159

13

49:26:51N, 20:26:09E

500

5

2

1.666667

14

49:34:11N, 20:20:24E

500

61

9

4.80315

15

49:36:21N, 20:22:52E

650

62

9

3.199662

16

49:25:56N, 20:29:11E

550

51

10

1.883309

17

49:19:45N, 20:06:22E

1,000

72

10

7.495601

18

49:20:49N, 20:08:07E

754

58

6

2.434462

19

49:20:45N, 20:11:10E

973

80

8

4.501425

20

49:22:28N, 20:10:54E

738

53

9

4.671186

21

96:19:33N, 20:01:47E

786

68

12

8.968504

22

49:17:51N, 20:02:17E

970

88

16

6.645833

23

49:18:23N, 20:00:28E

895

87

10

5.746544

24

49:17:03N, 19:55:17E

883

84

11

6.958084

25

49:18:41N, 19:49:57E

848

94

12

5.070766

26

49:20:06N, 19:50:54E

840

73

12

6.636364

27

49:15:22N, 20:00:08E

1,520

40

6

4.875

28

49:14:28N, 20:00:08E

1,580

29

6

4.185567

29

49:14:04N, 19:58:31E

1,940

0

0

0

30

49:15:08N, 19:58:17E

1,400

12

4

3.882353

31

49:16:03N, 19:58:42E

1,100

24

8

7.885714

32

49:30:15N, 20:11:09E

830

121

9

3.787167

Appendix 2

Total numbers of visits by each bee species to different plant species

 

Campestris

Hortorum

Humilis

Hypnorum

Lapidarius

Lucorum

Pascuorum

Pratorum

Pyrenaeus

Trifolium pratense

 

81

3

7

  

29

4

 

167

14

2

1

 

Epilobium angustifolium

1

 

1

 

10

17

9

30

49

22

2

29

53

38

Centaurea nigra

6

  

6

 

1

39

18

10

21

15

   

Impatiens glandulifera

1

25

13

   

1

2

 

24

1

   

Galeopsis tetrahit

 

15

    

1

  

50

2

   

Trifolium repens

  

1

   

11

3

9

22

2

1

  

Symphytum officinale

 

4

   

3

6

1

 

7

  

2

 

Mentha spicata

    

1

 

2

10

27

 

1

1

1

 

Knautia arvensis

1

    

1

4

3

3

4

8

 

1

5

Trifolium medium

1

4

3

   

4

  

19

10

   

Carduus crispus

8

 

1

1

1

1

1

1

3

8

6

   

Cirsium arvense

2

    

1

4

5

11

1

6

2

  

Lathyrus pratensis

      

9

 

2

13

    

Stachys sylvatica

 

2

2

1

  

3

  

19

3

   

Rbus fruticosus agg.

      

3

1

3

4

5

 

2

 

Origanum vulgare

    

4

1

8

 

2

8

2

1

1

 

Other

 

14

2

  

1

29

22

34

56

20

6

4

6

 

Ruderarius

Ruderatus

Soroeensis

Sylvarum

Terrestris

Veteranus

Wurflenii

Total

 

Trifolium pratense

8

6

9

8

1

16

2

  

9

17

2

389

Epilobium angustifolium

 

1

 

47

21

2

3

2

 

3

 

6

347

Centaurea nigra

1

4

 

85

42

6

1

3

 

5

 

4

272

Impatiens glandulifera

  

6

4

 

4

   

4

  

85

Galeopsis tetrahit

 

1

2

      

1

  

72

Trifolium repens

3

2

 

11

3

1

   

1

  

70

Symphytum officinale

1

  

4

 

13

1

2

  

6

2

52

Mentha spicata

   

1

   

1

5

 

1

 

51

Knautia arvensis

   

16

3

   

1

  

1

51

Trifolium medium

2

   

3

      

2

49

Carduus crispus

   

9

2

  

1

1

 

1

 

46

Cirsium arvense

 

1

 

2

   

3

  

1

 

39

Lathyrus pratensis

2

    

2

1

   

9

 

39

Stachys sylvatica

 

3

   

1

      

34

Rbus fruticosus agg.

   

9

2

      

1

30

Origanum vulgare

      

1

 

1

   

29

Other

1

1

1

10

3

3

1

 

8

 

14

4

291

  1. Nectar and pollen-collecting visits are combined. Bee species and castes are only shown if at least 10 observations were obtained, and plants are only included if there were at least 20 visits to them

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulson, D., Lye, G.C. & Darvill, B. Diet breadth, coexistence and rarity in bumblebees. Biodivers Conserv 17, 3269–3288 (2008). https://doi.org/10.1007/s10531-008-9428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9428-y

Keywords

Navigation