Skip to main content

Genetic structure of an insect-pollinated and bird-dispersed tropical tree in vegetation fragments and corridors: implications for conservation

Abstract

In the vegetation corridors that connect small remnants of undisturbed primary forest in the Lavras landscape (Brazil), Protium spruceanum is a representative of a mass-flowering insect-pollinated and bird-dispersed tree. Allozyme variation was quantified from five forest remnants (N = 150) from secondary vegetation corridors linking them (N = 80) to generate information for genetic conservation. The species adhered to H-W equilibrium in all fragments in most of the loci. The results indicated high gene diversity in the fragments \(({\hat{H}}_{\rm e}=0.381{-}0.507)\) and corridors \(({\hat{H}}_{\rm e}=0.336{-}0.470),\) positively correlated with the plant density (r = 0.742, R 2 = 0.551, d.f. = 4). We did not find evidence of inbreeding within fragments \((\hat{f}=-0.188, P<0.05)\) nor overall \((\hat{F}=-0.101, P<0.05).\) The genetic differentiation among remnants was low \((\hat{\theta}_{\rm p}=2.8\%).\) Evidence of recent bottlenecks by anthropogenic disturbance was detected in fragments (P < 0.05, Wilcoxon sign-rank test). The minimal viable population was estimated for conservation in situ, indicating fragments with possibilities of maintaining genetic equilibrium diversity in the short term (except F3) and in the long term (only F5). The \(\hat{N}_{\rm e}/N\) ratios was also calculated to contribute to vegetation enrichment, area recovery or creation of new vegetation corridors. We found high levels of gene diversity in the vegetation corridors, genetic identity with the fragments and absence of inbreeding. Thus, our results suggest that landscape management strategies should therefore consider both the creation of new vegetation corridors and the protection of extant ones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aizen MA, Feinsinger P (1994) Forest fragmentation, pollination, and plant reproduction in a chaco dry forest, Argentina. Ecology 75(2):330–351

    Article  Google Scholar 

  2. Alfenas CA et al (1998) Eletroforese de proteínas e isoenzimas afins: fundamentos e aplicações em plantas e microorganismos. Viçosa, UFV, p 574

  3. Andreassen HP, Hertzberg K, Ims RA (1998) Space-use responses to habitat fragmentation and connectivity in the root vole Microtus oeconomus. Ecology 79:1223–1235

    Google Scholar 

  4. Bacles CFE, Lowe AJ, Ennos RA (2004) Genetic effects of chronic habitat fragmentation on tree species: the case of Sorbus aucuparia in a deforested Scottish landscape. Mol Ecol 13:573–584

    PubMed  Article  CAS  Google Scholar 

  5. Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:628

    PubMed  Article  Google Scholar 

  6. Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (2004) Genetix, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome et Populations, Cnrs Umr 5000, Université de Montpellier II, Montpellier, France. Last update: 05/05/2004

  7. Benitez-Malvido J, Martínez Ramos M (2003) Influence of edge exposure on tree seedling species recruitment in tropical rain forest fragments. Biotropica 35:530–541

    Google Scholar 

  8. Berg EE, Hamrick JL (1997) Quantification of genetic diversity at allozyme loci. Can J For Res 27(3):415–424

    CAS  Google Scholar 

  9. Calvo RN, Horvitz CC (1990) Pollinator limitation, cost of reproduction, and fitness in plants: a transition–matrix demographic approach. Am Nat 136(3):499–516

    Article  Google Scholar 

  10. Cascante A, Quesada M, Lobo JA, Fuchs EJ (2002) Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conserv Biol 16:137–147

    Article  Google Scholar 

  11. Castro GC (2004) Structure analysis, floristic diversity and spatial variation of the tree component of vegetation corridors in Upper Rio Grande region, Minas Gerais State, 83 pp. Dissertation – Master Degree in Forest Engineering, Universidade Federal de Lavras, Lavras, MG

  12. Cockerham CC (1969) Variance of gene frequencies. Evolution 23(1):72–84

    Article  Google Scholar 

  13. Corbet SA (1998) Fruit and seed production in relation to pollination and resources in bluebell, Hyacinthoides nonscripta. Oecologia 114(3):349–360

    Article  Google Scholar 

  14. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014

    PubMed  CAS  Google Scholar 

  15. Crow JF, Kimura MA (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  16. Cunningham SA (2000) Depressed pollination in habitat fragments causes low fruit set. Proc R Soc Lond Ser B 267:1149–1152

    Article  CAS  Google Scholar 

  17. Dayanandan S, Dole J, Bawa K, Kesseli R (1999) Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae). Mol Ecol 8(10):1585–1592

    PubMed  Article  Google Scholar 

  18. Dick CW, Etchelecu G, Austerlitz, F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12(3):753–764

    PubMed  Article  Google Scholar 

  19. Ellstrand N, Elam E (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–241

    Article  Google Scholar 

  20. Feinsinger P, Murray KG, Kinsman S, Busby WH (1986) Floral neighborhood and pollination success in four hummingbird pollinated cloud forest plant species. Ecology 67(2):449–464

    Article  Google Scholar 

  21. Franceschinelli EV, Bawa KS (2000) The effect of ecological factors on the mating system of a South American shrub species (Helicteres brevispira). Heredity 84(1):116–123

    PubMed  Article  Google Scholar 

  22. Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University Press, Cambridge, p 299

  23. Fuchs EJ, Lobo JA, Quesada M (2003) Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conserv Biol 17(1):149–157

    Article  Google Scholar 

  24. Ghazoul J, Liston, KA, Boyle TJB (1998) Disturbance–induced density–dependent seed set in Shorea siamensis (Dipterocarpaceae), a tropical forest tree. J Ecol 86(3):462–473

    Article  Google Scholar 

  25. Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices, Version 2.9. 3.2, 2002. Available at: http://www.unil.ch/izea/softwares/fstat.html

  26. Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622

    Article  Google Scholar 

  27. Hall P, Walker S, Bawa KS (1996) Effect of forest fragmentation on genetic diversity and mating system in a tropical tree, Pithecellobium elegans. Conserv Biol 10(3):757–768

    Article  Google Scholar 

  28. Hamrick JL, Godt, MT (1989) Allozyme diversity in plant species. In: Brow AHD et al (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, MA, pp 43–63

  29. Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal?. J Veg Sci 7:593–598

    Article  Google Scholar 

  30. Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103(21):8096–8100

    PubMed  Article  CAS  Google Scholar 

  31. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49(4):725–738

    PubMed  CAS  Google Scholar 

  32. Kirchner F, Ferdy J–B, Andalo C, Moret B, Colas J (2003) Role of corridors in plant dispersal: an example with the endangered Ranunculus nodiflorus. Conserv Biol 17(2):401–410

    Article  Google Scholar 

  33. Lee S-L, Ng KK-S, Saw L-G, Norwati A, Salwana MHS, Lee C-T, Norwati M (2002) Population genetics of Intsia palembanica (Leguminosae) and genetic conservation of Virgin Jungle Reserves in Peninsular Malaysia. Am J Bot 89(3):447–459

    Article  Google Scholar 

  34. Lenza E, Oliveira PE (2005) Reproductive biology of Tapirira guianensis Aubl. (Anacardiaceae), a dioecious species, in a gallery forest of Triângulo Mineiro, Brazil. Rev Bras Bot 28(1):179–190

    Article  Google Scholar 

  35. Lewis PO, Zaykin D (2000) Genetic data analysis: computer program for the analysis of allelic data. Version 1. 0 (d15). Free program distributed by the authors over the internet from the GDA. 2000. Available at: http://alleyn.eeb.uconn.edu/gda/2000

  36. Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  37. Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation, reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95(4):255–273

    PubMed  Article  CAS  Google Scholar 

  38. Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12(1):228–237

    Article  Google Scholar 

  39. Luikart G, Allendorf FW, Cornuet, JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89(3):238–247

    PubMed  Article  CAS  Google Scholar 

  40. Machado LB, Zoghbi MGB, Andrade EHA (2003) Seasonal variation in the composition of the essential oils from leaves, thin branches and resin of Protium spruceanum (Benth.) Engl. Flavour Frag J 18(4):338–341

    Article  CAS  Google Scholar 

  41. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  42. Mech SG, Hallett JG (2001) Evaluating the effectiveness of corridors: a genetic approach. Conserv Biol 15(2):467–474

    Article  Google Scholar 

  43. Murawski DA, Hamrick JL (1991) The effect of the density of flowering individuals on the mating systems of nine tropical tree species. Heredity 67(2):167–174

    Article  Google Scholar 

  44. Myers N (1986) Tropical deforestation and a mega-extinction spasm. In: Soule’ ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 394–409

    Google Scholar 

  45. Nason JD, Hamrick JL (1997) Reproductive and genetic consequences of forest fragmentation: two case studies of neotropical canopy trees. J Hered 88(4):264–276

    Google Scholar 

  46. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 87(3):583–590

    Google Scholar 

  47. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  48. Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. Trends Ecol Evol 8(7):234–239

    Article  Google Scholar 

  49. Oliveira Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of the plant species distributions. Edinb J Bot 52:141–194

    Article  Google Scholar 

  50. Oliveira Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in south-eastern Brazil and the influence of climate. Biotropica 32:793–810

    Google Scholar 

  51. Pereira JAA, Oliveira-Filho AT, Lemos-Filho JP (2006) Environmental heterogeneity and disturbance by humans control much of the tree species diversity of Atlantic montane forest fragments in SE Brazil. Biodivers Conserv 105(31):63–90

    Google Scholar 

  52. Quesada M, Stoner KE, Lobo JA, Herrerías-Diego Y, Palacios-Guevara C, Murguía-Rosas MA, Salazar KAO (2004) Effects of forest fragmentation on pollinator activity and consequences for plant reproductive success and mating patterns in bat pollinated bombacaceous trees. Biotropica 36:131–138

    Google Scholar 

  53. Rohlf FJ (1989) Numerical taxonomy and multivariate analysis system. Exeter Software, New York

    Google Scholar 

  54. Rosenberg DK, Noon BR, Meslow EC (1997) Biological corridors: form, function, and efficacy. BioScience 47:677–687

    Article  Google Scholar 

  55. Simberloff D, Farr JA, Cox J, Mehlman DW (1992) Movement corridors: conservation bargains or poor investments?. Conserv Biol 6(4):493–504

    Article  Google Scholar 

  56. Swofford DL, Selander RB (1997) Biosys-2. A computer program for the analysis of allelic variation in population genetics and biochemical systematics. University of Illinois, Urbana

    Google Scholar 

  57. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  58. Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Ann Mo Bot Gard 77:13–27

    Article  Google Scholar 

  59. van Treuren R, Bijlsma R, Ouborg NJ, van Delden W (1993) The effects of population size and plant density on outcrossing rates in locally endangered Salvia pratensis. Evolution 47(6):1094–1104

    Article  Google Scholar 

  60. Vencovsky R (1997) Biometrical approaches for molecular markers: estimation of effective population size. In: International Workshop on Agricultural Biotechnology, 1997, Piracicaba. Proceedings. Piracicaba: Esalq–Usp, Cook College: New Jersey Agricultural Experiment Station, The State University of New Jersey, 2 p

  61. Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  62. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  63. White GM, Boshier DH, Powell W (1999) Genetic variation within a fragmented population of Swietenia humilis Zucc. Mol Ecol 8(11):1899–1909

    PubMed  Article  CAS  Google Scholar 

  64. White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99(4):2038–2042

    PubMed  Article  CAS  Google Scholar 

  65. Young AG, Clarke GM (2000) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge

    Google Scholar 

  66. Zar JH (1999) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Anderson M. de Souza for field assistance, Dr. Eduardo L. Borba (UFMG-Brazil) and Dr. Christian Lexer (RBG-Kew) and anonymous referees for helpful and constructive comments on the manuscript. Gislene C. de Castro for providing information on plant density and Vivette Appolinário helped in the collection and analysis of reproductive biology data. The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional Pesquisa (CNPq) are also acknowledged for providing a MSc fellowship for F. A. Vieira, a research fellowship for Dr. Dulcinéia de Carvalho and research grant. We thank the FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for financial support (CRA 1770/05).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dulcinéia de Carvalho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Almeida Vieira, F., de Carvalho, D. Genetic structure of an insect-pollinated and bird-dispersed tropical tree in vegetation fragments and corridors: implications for conservation. Biodivers Conserv 17, 2305–2321 (2008). https://doi.org/10.1007/s10531-008-9367-7

Download citation

Keywords

  • Allozymes
  • Conservation genetics
  • Habitat fragmentation
  • Landscape structure
  • Minimum viable populations
  • Protium spruceanum
  • Vegetation corridors