Biodiversity and Conservation

, Volume 17, Issue 6, pp 1439–1454 | Cite as

Dry grassland plant diversity conservation using low-intensity sheep and goat grazing management: case study in Prague (Czech Republic)

Original Paper

Abstract

After abandonment, dry grassland (Festuco-Brometea) areas decline due to gradual overgrowing by woody species and the expansion of perennial tall grass species. Dry grassland vegetation was formed by extensive livestock grazing, thus grazing is considered one of the most natural methods for managing this type of vegetation. Six years after introducing low-intensity sheep and goat grazing in seven nature reserves in Prague (Czech Republic), the following impact of this management on dry grassland vegetation was observed: The cover of expansive woody species, particularly Ligustrum vulgare, and to a smaller extent Cornus sanguinea and Prunus spinosa declined. In addition, a significant, long-term declining trend of the expansive species Arrhenatherum elatius was also observed. Also the cover of Pimpinella saxifraga and Allium senescens declined significantly with regard to statistical evaluation. On the contrary, the cover of Achillea millefolium, Centaurea stoebe, Securigera varia, Elytrigia repens, Erysimum crepidifolium, Falcaria vulgaris, Fallopia convolvulus and Verbascum lychnitis increased. The cover of species characteristic of dry grasslands (Festuco-Brometea) increased significantly. No changes were observed in the number and cover of the Red List species. In addition, the presence of nitrophilous and ruderal species increased. Species diversity also significantly increased. From our findings we can conclude that managing dry grasslands with low-intensity grazing can help to keep dry grassland vegetation in good condition and conserve its plant diversity.

Keywords

Dry grassland Grazing Plant diversity conservation Prague (Czech Republic) 

References

  1. Bąba W (2003) Changes in the structure and floristic composition of the limestone grasslands after cutting trees and shrubs and mowing. Acta Soc Bot Pol 72:61–69Google Scholar
  2. Bąba W (2004) The species composition and dynamics in well-preserved and restored calcareous xerothermic grassland (South Poland). Biologia, Bratislava 59:447–456Google Scholar
  3. Baier A, Tischew S (2004) Naturschutz-Management auf Xerothermrasenstandorten in Sachsen-Anhalt-Gefährdungsanalyse und Entwicklungsstrategien am Beispiel des Naturschutzgebietes“Lämmerberg und Vockenwinkel”. Hercynia N F 37:201–230Google Scholar
  4. Barbaro L, Dutoit T, Cozic P (2001) A six-year experimental restoration of biodiversity by shrub-clearing and grazing in calcareous grassland of the French Prealps. Biodivers Conserv 10:119–135CrossRefGoogle Scholar
  5. Bornkamm R (2006) Fifty years vegetation development of a xerothermic calcareous grassland in Central Europe after heavy disturbance. Flora 201:249–267Google Scholar
  6. Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001) A plant trait analysis of responses to grazing in a long-term experiment. J Appl Ecol 38:253–267CrossRefGoogle Scholar
  7. Chytrý M, Kučera T, Kočí T (eds) (2001) Katalog biotopů České republiky [Habitat Catalogue of the Czech Republic]. Agentura ochrany přírody a krajiny, Praha (in Czech, English summary)Google Scholar
  8. Chytrý M, Tichý L (2003) Diagnostic, constant and dominant species of vegetation classes and alliences of the Czech Republic: a statistical revision. Folia Fac Sci Nat Univ Masaryk Brun 108:1–231Google Scholar
  9. Dolek M, Geyer A (2002) Conserving biodiversity on calcareous grasslands in the Franconian Jura by grazing: a comprehensive approach. Biol Conserv 104:351–360CrossRefGoogle Scholar
  10. Dzwonko Z, Loster S (1998) Dynamics of species richness and composition in a limestone grassland restored after tree cutting. J Veg Sci 9:387–394CrossRefGoogle Scholar
  11. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5. stark veränderte u. verbesserte Aufl. Ulmer, StuttgartGoogle Scholar
  12. Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, CambridgeGoogle Scholar
  13. Grime JP (1979) Plant strategies and vegetation processes. J Wiley & Sons, ChichesterGoogle Scholar
  14. Hadar L, Noy-Meir I, Perevolotsky A (1999) The effect of shrub clearing and grazing on the composition of a Mediterranean plant community: functional groups versus species. J Veg Sci 10:673–682CrossRefGoogle Scholar
  15. Heil GW, Werger MJA, De Mol W, Van Dam D, Heijne B (1988) Capture of atmospheric ammonium by grassland canopies. Science 239:764–765PubMedCrossRefGoogle Scholar
  16. Hewett DG (1985) Grazing and mowing as management tools on dunes. Plant Ecol 62:441–447CrossRefGoogle Scholar
  17. Hodgson J (1979) Nomenclature and definitions in grazing studies. Grass Forage Sci 34:11–18CrossRefGoogle Scholar
  18. Holub J, Procházka F (2000) Red list of vascular plants of the Czech Republic—2000. Preslia 72:187–230Google Scholar
  19. Hroudová Z, Prach K (1994) Dlouhodobé změny reliktního stepního porostu v Českém krasu [Long-term changes in relict steppe community in Bohemia Karst, Czech Republic]. Příroda 1:63–72 (in Czech with English abstract)Google Scholar
  20. Jäger C, Mahn EG (2001) Die Halbtrockenrasen im Raum Questenberg (Südharz) in Beziehungen zu ihrer Nutzungsgeschichte. Hercynia N F 34:213–235Google Scholar
  21. Kahmen S, Poschlod P, Schreiber KF (2002) Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol Conserv 104:319–328CrossRefGoogle Scholar
  22. Klimek S, Richter gen. Kemmermann A, Hofmann M, Isselstein J (2007) Plant species richness and composition in managed grasslands: the relative importance of field management and environmental factors. Biol Conserv 134:559–570CrossRefGoogle Scholar
  23. Kolbek J (1978) Die Festucetalia valesiacae-Gesellschaften im Ostteil des Gebirges České středohoří (Böhmisches Mittelgebirge) 2. Synökologie, Sukzession, und syntaxonomische Ergänzungen. Folia Geobotanica et Phytotaxonomica 13:235–303Google Scholar
  24. Krahulec F, Skálová H, Herben T, Hadincová V, Wildová R, Pecháčková S (2001) Vegetation changes following sheep grazing in abandoned mountain meadows. Appl Veg Sci 4:97–102Google Scholar
  25. Kubát K, Hrouda L, Chrtek J jun., Kaplan Z, Kirschner J, Štěpánek J (eds) (2002) Klíč ke květeně České republiky [Key to the Flora of the Czech Republic]. Academia, PrahaGoogle Scholar
  26. Kubíková J (1976) Geobotanické vyhodnocení chráněných území na severovýchodě Prahy [Geobotanische Erschätzung von Naturschutzgebieten im nordöstlichen Teil von Prag]. Bohemia Centralis 5:61–105Google Scholar
  27. Kubíková J (1999) Xerotermní trávníky až semixerotermní lemy [Xerothermic grasslands and subxerothermic margins]. In: Petříček V (ed) Péče o chráněná území I. [Nature Reserves Management I.]. Agentura ochrany přírody a krajiny ČR, Praha, pp 213–236 (in Czech with German summary)Google Scholar
  28. Ložek V (1971) K otázce stepí ve střední Evropě [Weitere Anmerkungen zum Problem der mitteleuropäischen Steppen]. Zpr Čs Bot Spol 6:226–232 (in Czech with German summary)Google Scholar
  29. Moravec J et al (1991) Přirozená vegetace území hlavního města Prahy a její rekonstrukční mapa [Natural Vegetation of the Territory of the Capital City Prague and its Reconstruction Map]. Academia, Praha (in Czech with English summary)Google Scholar
  30. Moravec J et al (1995) Rostlinná společenstva České republiky a jejich ohrožení 2. ed. [Red List of Plant Communities of the Czech Republic and their Endangerment 2.ed.], Severočeskou Přírodou, příl.1, pp 1–206Google Scholar
  31. Münzbergová Z (2001) Obnova druhově bohatých xerotermních trávníků na příkladu rezervací Stráně u splavu a Stráně u Chroustova [Restoration of species rich xerophilous grasslands: a case study of two nature reserves in Central Bohemia]. Příroda 19:101–121 (in Czech with English abstract)Google Scholar
  32. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144CrossRefGoogle Scholar
  33. Poissonet J, Poissonet P, Thiault M (1981) Development of flora, vegetation and grazing value in experimental plots of a Quercus coccifera garrigue. Vegetatio 46:93–104CrossRefGoogle Scholar
  34. Poschlod P, Kiefer S, Trankle U, Fischer S, Bonn S (1998) Plant species richness in calcareous grasslands affected by dispersability in space and time. Appl Veg Sci 1:75–90CrossRefGoogle Scholar
  35. Poschlod P, Schneider-Jacoby M, Köstermeyer H, Hill BT, Beinlich B (2002) Does large-scale, multi-species pasturing maintain high biodiversity with rare and endangered species?—The Sava floodplain case study. In: Redecker B, Finc P, Härdtle W, Riecken U, Schröder E (eds) Pasture landscapes and nature conservation. Springer-Verlag, Berlin, Heidelberg, New York, pp 367–378Google Scholar
  36. Procházka F (ed) (2001) Černý a červený seznam cévnatých rostlin České republiky (stav v roce 2000) [Black and Red List of Vascular Plants of the Czech Republic—2000]. Příroda 18:1–166 (in Czech with English summary)Google Scholar
  37. Richter B, Partzsch M, Hensen I (2003) Vegetation, Kultur- und Nutzungsgeschichte der xerothermen Hügellandschaft bei Mücheln/Wettin (Sachsen-Anhalt). Hercynia N F 36:91–121Google Scholar
  38. Riecken U, Finc P, Klein M, Schröder E (1998) Überlegungen zu alternativen Konzepten des Naturschutzes für den Erhalt und die Entwicklung von Offenlandbiotopen. Natur und Landschaft 73:261–270Google Scholar
  39. ter Braak CJF, Šmilauer P (1998) CANOCO Reference Manual and Usery’s Guide to Canoco for Windows. Software for Canonical Community Ordination (Version 4). Centre of Biometry, WageningenGoogle Scholar
  40. Vera FWM (2000) Grazing ecology and forest history. CABI Publishing, Wallingford Oxon, UKGoogle Scholar
  41. Wallis De Vries MF (1999) The dilemma facing nature conservation and the role of large herbivores. In: Gerken B, Görner M (eds) The development of European landscapes with large herbivores—history, models and perspectives. Natur und Kulturlandschaft 3:24–31Google Scholar
  42. Wallis De Vries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  43. Walter H, Lieth H (1960–1967) Klimadiagram-Weltatlas, JenaGoogle Scholar
  44. Willems JH (1983) Species composition and above ground phytomass in chalk grassland with different management. Vegetatio 52:171–180CrossRefGoogle Scholar
  45. Willems JH (2001) Problems, approaches, and results in restoration of Dutch calcareous grassland during the last 30 years. Restor Ecol 9:147–154CrossRefGoogle Scholar
  46. Willems JH, Peet RK, Bik L (1993) Changes in chalk-grasslands structure and species richness resulting from selective nutrient additions. J Veg Sci 4:203–212CrossRefGoogle Scholar
  47. Wilson MV, Clark DL (2001) Controlling invasive Arrhenatherum elatius and promoting native prairie grasses through mowing. Appl Veg Sci 4:129–138CrossRefGoogle Scholar
  48. Zobel M, Suurkask M, Rosén E, Pärtel M (1996) The dynamics of species richness in an experimentally restored calcareous grassland. J Veg Sci 7:203–210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Silva Tarouca Research Institute for Landscape and Ornamental GardeningPrůhoniceCzech Republic
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic

Personalised recommendations