Biodiversity and Conservation

, Volume 17, Issue 6, pp 1353–1366 | Cite as

Predicting species distributions in poorly-studied landscapes

  • P. A. Hernandez
  • I. Franke
  • S. K. Herzog
  • V. Pacheco
  • L. Paniagua
  • H. L. Quintana
  • A. Soto
  • J. J. Swenson
  • C. Tovar
  • T. H. Valqui
  • J. Vargas
  • B. E. Young
Original Paper

Abstract

Conservationists are increasingly relying on distribution models to predict where species are likely to occur, especially in poorly-surveyed but biodiverse areas. Modeling is challenging in these cases because locality data necessary for model formation are often scarce and spatially imprecise. To identify methods best suited to modeling in these conditions, we compared the success of three algorithms (Maxent, Mahalanobis Typicalities and Random Forests) at predicting distributions of eight bird and eight mammal species endemic to the eastern slopes of the central Andes. We selected study species to have a range of locality sample sizes representative of the data available for endemic species of this region and also that vary in their distribution characteristics. We found that for species that are known from moderate numbers (= 38–94) of localities, the three methods performed similarly for species with restricted distributions but Maxent and Random Forests yielded better results for species with wider distributions. For species with small numbers of sample localities (= 5–21), Maxent produced the most consistently successful results, followed by Random Forests and then Mahalanobis Typicalities. Because evaluation statistics for models derived from few localities can be suspect due to the poor spatial representation of the evaluation data, we corroborated these results with review by scientists familiar with the species in the field. Overall, Maxent appears to be the most capable method for modeling distributions of Andean bird and mammal species because of the consistency of results in varying conditions, although the other methods have strengths in certain situations.

Keywords

Maxent Mahalanobis Typicalities Model evaluation Species distribution models Random Forests 

Supplementary material

10531_2007_9314_MOESM1_ESM.tif (29.6 mb)
(TIF 30260 kb)

References

  1. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232CrossRefGoogle Scholar
  2. Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728CrossRefGoogle Scholar
  3. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modeling. J Biogeogr 33:1677–1688CrossRefGoogle Scholar
  4. Araújo MB, Williams PH (2000) Selecting areas for species persistence using occurrence data. Biol Conserv 96:331–345CrossRefGoogle Scholar
  5. Bourg NA, McShea WJ, Gill DE (2005) Putting a CART before the search: successful habitat prediction for a rare forest herb. Ecology 86:2793–2804CrossRefGoogle Scholar
  6. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont, California, USAGoogle Scholar
  7. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  8. Burgman MA, Lindenmayer DB, Elith J (2005) Managing landscapes for conservation under uncertainty. Ecology 86:2007–2017CrossRefGoogle Scholar
  9. Dungan JL, Citron-Pousty S, Dale M, Fortin M-J, Jakomulska A, Legendre P, Miriti M, Rosenberg M (2002) A balanced view of scaling in spatial statistical analysis. Ecography 25:626–640CrossRefGoogle Scholar
  10. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira RE, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  11. Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274CrossRefGoogle Scholar
  12. Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol Model 160:115–130CrossRefGoogle Scholar
  13. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  14. Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species - level modelling. Biodivers Conserv 11:2275–2307CrossRefGoogle Scholar
  15. Foody GM, Campbell NA, Trodd NM, Wood TF (1992) Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm Eng Remote Sens 58:1335–1341Google Scholar
  16. Guisan A, Lehmann A, Ferrier S, Austin M, Overton JM, Aspinall R, Hastie T (2006) Making better biogeographical predictions of species’ distributions. J Appl Ecol 43:386–392CrossRefGoogle Scholar
  17. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  18. Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and application in biodiversity analysis. Trends Ecol Evol 19:497–503PubMedCrossRefGoogle Scholar
  19. Hansen M, DeFries R, Townshend JR, Carroll M, Dimiceli C, Sohlberg R (2003) Vegetation continuous fields MOD44B, 2001 percent tree cover, collection 3, University of Maryland, College Park, Maryland, 2001Google Scholar
  20. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785CrossRefGoogle Scholar
  21. Hirosawa Y, March SE, Kliman DH (1996) Application of standardized principal component analysis to land-cover characterization using multitemporal AVHRR data. Remote Sens Environ 58:267–281CrossRefGoogle Scholar
  22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  23. IDRISI (2006) The Andes edition. Clark Labs, Clark University, Worcester, MAGoogle Scholar
  24. Lawler JJ, White D, Neilson RP, Blaustein AR (2006) Predicting climate-induced range shifts: model differences and model reliability. Global Change Biol 12:1568–1584CrossRefGoogle Scholar
  25. Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17:1591–1600CrossRefGoogle Scholar
  26. McPherson JM, Jetz W (2007) Effects of species’ ecology on the accuracy of distribution models. Ecography 30:135–151Google Scholar
  27. McPherson JM, Jetz W, Rogers DJ (2006) Using coarse-grained occurrence data to predict species distributions at finer spatial resolutions—possibilities and limitations. Ecol Model 192:499–522CrossRefGoogle Scholar
  28. Pearce J, Boyce MS (2006) Modeling distribution and abundance with presence-only data. J Appl Ecol 43:405–412CrossRefGoogle Scholar
  29. Pearce JL, Cherry K, Drielsma M, Ferrier S, Whish G (2001) Incorporating expert opinion and fine - scale vegetation mapping into statistical models of faunal distribution. J Appl Ecol 38:412–424CrossRefGoogle Scholar
  30. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species’ distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRefGoogle Scholar
  31. Phillips SJ, Dudik M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-first Century International Conference on Machine Learning, Banff, Canada, 2004Google Scholar
  32. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  33. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199CrossRefGoogle Scholar
  34. R 2.1.1 (2005) The R development core team. URL: http://www.r-project.org/
  35. Raxworthy CJ, Martinez-Meyer E, Horning N, Nussbaum RA, Schneider GE, Ortega-Huerta MA, Peterson AT (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841PubMedCrossRefGoogle Scholar
  36. Remsen JV Jr, Cadena CD, Jaramillo A, Nores M, Pacheco JF, Robbins MB, Schulenberg TS, Stiles FG, Stotz DF, Zimmer KJ (2006) A classification of the bird species of South America. American Ornithologists’ Union. Version 4. http://www.museum.lsu.edu/~Remsen/SACCBaseline.html
  37. Rodríguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modeling of species distribution to biodiversity conservation. Divers Distrib. doi:10.1111/j.1472-4642.2007.00356.x
  38. Seoane J, Bustamante J, Díaz-Delgado R (2005) Effect of expert opinion on the predictive ability of environmental models of bird distribution. Conserv Biol 19:512–522CrossRefGoogle Scholar
  39. Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568CrossRefGoogle Scholar
  40. Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) A comparative evaluation of presence-only methods for modeling species distribution. Divers Distrib. doi:10.1111/j.1472-4642.2007.00346.x
  41. Thuiller W (2003) BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biol 9:1353–1362CrossRefGoogle Scholar
  42. Vaughan IP, Ormerod SJ (2003) Improving the quality of distribution models for conservation by addressing shortcomings in the field-collection of training data. Conserv Biol 17:1601–1611CrossRefGoogle Scholar
  43. Vaughan IP, Osmerod SJ (2005) The continuing challenges of testing species distribution models. J Appl Ecol 42:720–730CrossRefGoogle Scholar
  44. Vayssières MP, Plant RE, Allen-Diaz BH (2000) Classification trees: an alternative non-paramentric approach for predicting species distribution. J Veg Sci 11:679–694CrossRefGoogle Scholar
  45. Wilson DE, Reeder DM (2005) Mammal species of the world, 3rd edn. Johns Hopkins University Press, Baltimore, USAGoogle Scholar
  46. Wilson KA, Westphal MI, Possingham HP, Elith J (2005) Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biol Conserv 122:99–112CrossRefGoogle Scholar
  47. Young BE (2007) Endemic species distributions on the east slope of the Andes in Peru and Bolivia. NatureServe, Arlington, Virginia, USAGoogle Scholar
  48. Zimmermann N (2000) Tools for analyzing, summarizing, and mapping of biophysical variables. Accessed: 8/5/2005. URL: http://www.wsl.ch/staff/niklaus.zimmermann/progs.html

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. A. Hernandez
    • 1
    • 2
  • I. Franke
    • 3
  • S. K. Herzog
    • 4
  • V. Pacheco
    • 3
  • L. Paniagua
    • 2
  • H. L. Quintana
    • 3
  • A. Soto
    • 5
  • J. J. Swenson
    • 2
  • C. Tovar
    • 5
  • T. H. Valqui
    • 6
  • J. Vargas
    • 7
  • B. E. Young
    • 2
  1. 1.TorontoCanada
  2. 2.NatureServeArlingtonUSA
  3. 3.Museo de Historia NaturalUniversidad Nacional Mayor de San MarcosLimaPeru
  4. 4.Asociación Armonía – BirdLife InternationalSanta Cruz de la SierraBolivia
  5. 5.Centro de Datos para la ConservaciónUniversidad Nacional Agraria La MolinaLimaPeru
  6. 6.Museum of Natural ScienceLouisiana State UniversityBaton RougeUSA
  7. 7.Colección Boliviana de FaunaMuseo Nacional de Historia NaturalLa PazBolivia

Personalised recommendations