Skip to main content
Log in

Distribution of medium- to large-sized African mammals based on habitat suitability models

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The knowledge of the areas inhabited by a species within its distribution range and the connections among patches are critical pieces of information for successful conservation actions. The internal structure of the extent of occurrence (EO) of a species is almost always unknown, even for “well-known” flagship species. We developed a methodology to infer the area of occupancy (AO) within the EO of a species using the limited available data. We present here the results of a three years project funded by European Union to develop high-resolution models of habitat suitability for 281 medium- to large-sized African mammals across the whole continent. The existing literature was reviewed and all data on the geographic distribution and environmental preferences of the selected species were collected. For each species, these data were then expressed in terms of key variables available as GIS layers at a resolution of 1 km2 over the entire African continent. The AO of each species was obtained merging the information on the ecological needs of the species and the values of ecological variables over the region identified as EO. The habitat suitability models were evaluated through direct field work in four countries (Morocco, Cameroon, Uganda, Botswana) chosen as representatives of the environmental and species diversity of Africa. More than 81% of models had positive true skill statistics (TSS) values, indicating models performing better than random. Rigorous modeling procedures supported by ad-hoc field evaluation allowed the production of high-resolution habitat suitability models useful for conservation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akçakaya HR, Ferson S (1990) RAMAS/space user manual: spatially structured population models for conservation biology. Applied Biomathematics, New York

    Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistics (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Andelman SJ, Willig MR (2002) Alternative configurations of conservation reserves for Paraguayan bats: considerations of spatial scale. Cons Biol 16(5):1352–1363

    Article  Google Scholar 

  • Araujo MB (2004) Matching species with reserves–uncertainties from using data at different resolutions. Biol Cons 118(4):533–538

    Article  Google Scholar 

  • Balmford A, Mace G, Ginsberg J (1998) The challenges to conservation in a changing world: putting processes on the map. In: Mace G, Balmford A, Ginsberg J (eds) Conservation in a changing world. Cambridge University Press, Cambridge

    Google Scholar 

  • Balmford A, Moore JL, Brooks T, Burgess N, Hansen LA, Williams P, Rahbek C (2001a) Conservation conflicts across Africa. Science 291:2616–2619

    Article  PubMed  CAS  Google Scholar 

  • Balmford A, Moore J, Brooks T, Burgess N, Hansen LA, Lovett JC, Tokumine S, Williams P, Rahbek C (2001b) People and biodiversity in Africa. Science 293:1591–1592

    Article  CAS  Google Scholar 

  • Boitani L, Corsi F, Reggiani G (2004) Mapping African mammal distributions for conservation: how to get the most from limited data. In: Burgess N, D’Amico J, Underwood E, Dinerstein E, Olson D, Itoua I, Schipper J, Ricketts T, Newman K (eds) Terrestrial ecoregions of Africa and Madagascar. Island Press, Washington DC

    Google Scholar 

  • Boone RB, Krohn WB (2000) Predicting broad scale occurrences of vertebrates in patchy landscapes. Lands Ecol 15(1):63–74

    Article  Google Scholar 

  • Boshoff AF, Kerley GIH, Cowling RM (2001) A pragmatic approach to estimating the distributions and spatial requirements of the medium- to large-sized mammals in the Cape Floristic Region, South Africa. Divers Distr 7(1–2):29–43

    Article  Google Scholar 

  • Brooks T, Balmford A, Burgess N, Fjeldsa J, Hansen LA, Moore J, Rahbek C, Williams PH (2001) Toward a blueprint for conservation in Africa. BioScience 51:613–624

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size shape, boundaries, and internal structure. Ann Rev Ecol System 27:597–623

    Article  Google Scholar 

  • Burgess ND, de Klerk H, Fjeldsa J, Rahbek C (2000) A preliminary assessment of congruence between biodiversity patterns in Afrotropical forest birds and forest mammals. Ostrich 71:286–291

    Google Scholar 

  • Burgess ND, Rahbek C, Wugt Larsen F, Williams P, Balmford A (2002) How much of the vertebrate diversity of sub-Saharan Africa is catered for by recent conservation proposals? Biol Cons 107(3):327–339

    Article  Google Scholar 

  • Burgess N, D’Amico J, Underwood E, Dinerstein E, Olson D, Itoua I, Schipper J, Ricketts T, Newman K (eds) (2004) Terrestrial ecoregions of Africa and Madagascar. Island Press, Washington DC

    Google Scholar 

  • Burgman MA, Lindenmayer DB (1998) Conservation biology for the Australian environment. Surrey Beatty and Sons, Chipping Norton, Sydney

    Google Scholar 

  • Butterfield BR, Csuti B, Scott JM (1994) Modeling vertebrate distributions for gap analysis. In: Miller RI (ed) Mapping the diversity of nature. Chapman and Hall, London

    Google Scholar 

  • Corsi F, De Leeuw I, Skidmore A (2000) Species distribution modelling with GIS. In: Boitani L, Fuller TK (eds) Research techniques in animal ecology. Columbia University Press, New York

    Google Scholar 

  • Csuti B, Crist P (2000) Methods for developing terrestrial vertebrate distribution maps for gap analysis, ver. 2.0.0. Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, Moscow

    Google Scholar 

  • Da Fonseca GAB, Balmford A, Bibby C, Boitani L, Corsi F, Brooks T, Gascon C, Olivieri S, Mittermeier RA, Burgess N, Dinerstein E, Olson D, Hannah L, Lovett J, Moyer D, Rahbek C, Stuart S, Williams P (2000) Following Africa’s lead in setting priorities. Nature 405:393–394

    Article  PubMed  CAS  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Envir Cons 24(1):38–49

    Article  Google Scholar 

  • Gaston KJ (1996) Species-range-size distributions: patterns, mechanisms and implications. Trends Ecol Evol 11(5):197–201

    Article  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, New York

    Google Scholar 

  • Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Science, Oxford

    Google Scholar 

  • Guisan A, Zimmerman NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hanski I (1994) Patch occupancy dynamics in fragmented landscapes. Trends Ecol Evol 9:131–134

    Article  Google Scholar 

  • Hanski I, Moilanen A, Gyllenberg M (1996) Minimum viable metapopulation size. Am Nat 147:527–541

    Article  Google Scholar 

  • Henebry GM, Merchant JW (2000) Geospatial data in time: limits and prospects for predicting species occurrences. In: Scott MJ, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington DC

    Google Scholar 

  • IUCN 2006 (2006) IUCN Red list of threatened species. IUCN, Gland, Switzerland (available at http://www.redlist.org, accessed December 15th, 2006)

  • Kerley GIH, Pressey RL, Cowling RM, Boshoff AF, Sims-Castley R (2003) Options for the conservation of large and medium-sized mammals in the Cape Floristic region hotspot, South Africa. Biol Cons 112(1–2):169–190

    Article  Google Scholar 

  • Kiester AR, Scott JM, Csuti B, Noss RF, Butterfield B, Sahr K, White D (1996) Conservation prioritization using GAP data. Cons Biol 10(5):1332–1342

    Article  Google Scholar 

  • Kodric-Brown A, Brown JH (1993) Incomplete data sets in community ecology and biogeography: a cautionary tale. Ecol Mon 3:736–742

    Google Scholar 

  • Lawes MJ, Piper SE (1998) There is less to binary maps than meets the eye: the use of species distribution data in the southern African sub-region. S Afr J Sci 94:207–210

    Google Scholar 

  • Lawton JH (1996) Population abundances, geographic ranges and conservation: 1994 Witherby Lecture. Bird Study 43:3–19

    Article  Google Scholar 

  • Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Cons Biol 17:1591–1600

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sensing 21(6–7):1303–1330

    Article  Google Scholar 

  • Mackey BG, Lindenmayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28(9):1147–1166

    Article  Google Scholar 

  • Maddock A, Du Plessis MA (1999) Can species data only be appropriately used to conserve biodiversity? Biodiv Cons 8(5):603–615

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  PubMed  CAS  Google Scholar 

  • Margules CR, Stein JL (1989) Patterns in the distributions of species and the selection of nature reserves: an example from the Eucalyptus forests in south-eastern New South Wales. Biol Cons 50:219–238

    Article  Google Scholar 

  • McGarigal K, Marks BJ (1994) FRAGSTATS spatial pattern analysis program for quantifying landscape structure. Version 2.0. Oregon State University, Corvallis, Oregon

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Olson DM, Dinerstein E (1998) The Global 200: a representation approach to conserving the earth’s most biologically valuable ecoregions. Cons Biol 2(3):502–515

    Article  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH (1999) The gaps between theory and practice in selecting nature reserves. Cons Biol 13(3):484–492

    Article  Google Scholar 

  • Reddy S, Davalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30(11):1719–1727

    Article  Google Scholar 

  • Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann M, Long JS, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Xie Y (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  PubMed  CAS  Google Scholar 

  • Rondinini C, Stuart S, Boitani L (2005) Habitat suitability models and the shortfall in conservation planning for African vertebrates. Cons Biol 19:1488–1497

    Article  Google Scholar 

  • Rondinini C, Boitani L, Grantham H, Wilson KA, Possingham HP (2006) Tradeoffs of different species data types for use in systematic conservation planning. Ecol Lett 9:1136–1145

    Article  PubMed  Google Scholar 

  • Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, D’Erchia F, Edwards TC Jr, Ullman J, Wright RG (1993) Gap analysis, a geographic approach to protection of biological diversity. Wildl Monogr 123:41

    Google Scholar 

  • Scott JM, Heglund PJ, Haufler JB, Morrison M, Raphael MG, Wall WB, Samson F (eds) (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Ithaca, New York

    Google Scholar 

  • Thomas CD, Jordano D, Lewis OT, Hill JK, Sutcliffe OL, Thomas JA (1998) Butterfly distributional patterns, processes and conservation. In: Mace G, Balmford A, Ginsberg J (eds) Conservation in a changing world. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Jaarsveld AS, Gaston KJ, Chown SL, Freitag S (1998) Throwing biodiversity out with the binary data? S Afr J Sci 94:210–214

    Google Scholar 

  • White FJ (1983) The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. UNESCO, Paris

    Google Scholar 

  • Williams PH, Margules CR, Hilbert DW (2002) Data requirements and data sources for biodiversity priority area selection. J Biosci 27(suppl. 2):327–338

    Article  PubMed  CAS  Google Scholar 

  • Wilson DE, Reeder DM (1993) Mammal species of the world, 2nd edn. Smithsonian Institution Press, Washington

    Google Scholar 

  • WRI (1995) Africa data sampler. World Resource Institute, Washington DC

    Google Scholar 

Download references

Acknowledgments

This study is an outcome of a project funded by the European Commission, grant n. B7-6200-94-15/VIII/ENV/1994/67. We thank E. Pironio, M. van Opstal, M. Jadot for assistance during project implementation. The analyses presented in this paper would not have been possible without the contributions of many people and organizations, and we would like to mention at least the following who provided data, collaboration, criticism and review: G. Amori, D. R. Baird, N. Burgess, J-P. d’Huart, R. East, R. Emslie, H. Hoeck, P. Jackson, H. Klingel, M. G. L. Mills, H. Van Rompaey, D. Shackleton, C. Sillero Zubiri. Additional data was provided by FAO, WCMC, IUCN-SSC. Field work was carried out in collaboration with the University of Botswana (Gaborone), the Institut de Recherches Zootechniques et Veterinaires (Yaoundé), the Association Marocaine pour la Protection de l’Environnement (Rabat), and the Makerere University Institute of Environment and Natural Resources (Kampala). J. T. Banser, M. Behangana, M. Dithlogo, G. Gabbi, A. Ghiurghi, B. Haddane, F. Kameni, T. R. Molefhe, B. H. Raseroka, G. B. Sekgororoane, D. B. Selepeng, El Ayachi Sehhar participated in the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Boitani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boitani, L., Sinibaldi, I., Corsi, F. et al. Distribution of medium- to large-sized African mammals based on habitat suitability models. Biodivers Conserv 17, 605–621 (2008). https://doi.org/10.1007/s10531-007-9285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9285-0

Keywords

Navigation