Skip to main content

Advertisement

Log in

Eutrophication and fragmentation are related to species’ rate of decline but not to species rarity: results from a functional approach

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Due to ubiquitous eutrophication and fragmentation, many plant species are actually threatened in Europe. Most ecosystems face an overall nutrient input leading to changes in species composition. Fragmentation is effectively influencing species survival. We investigate if two different measures of species performance of 91 calcareous grassland species–rate of decline and rarity—are related to comparable traits and hence processes. On the one hand we expected that species rate of decline is mainly determined by the processes of eutrophication and fragmentation. On the other hand we hypothesized that the importance of site characteristics may overwhelm the effect of eutrophication and fragmentation for species rarity. Hence, we compared persistence traits responding to eutrophication, dispersal traits being related to fragmentation and ecological site factors for decreasing and increasing species and for rare and common species. The results suggest that increasing species had better means of long-distance dispersal and were more competitive than decreasing species. In contrast, there were hardly any differences in traits between rare and common species, but site characteristics were related to species rarity. Rare species were in the main those with ecological preferences for warm, dry, light and nutrient poor conditions. This study may represent a basis for the assessment of plant species threat. Applying the deduced knowledge about the life history of decreasing versus increasing species to habitat-scale approaches it is possible to predict which species may become threatened in the future simply from the combination of their trait values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bekker RM, Kwak MM (2005) Life history traits as predictors of plant rarity, with particular reference to hemiparasitic Orobanchaceae. Folia Geobot 2–3:231–242

    Article  Google Scholar 

  • Bernhardt M (2005) Reaktionen der Waldbodenvegetation auf erhöhte Stickstoffeinträge- Analyse und Vorhersage von Vegetationsveränderungen anhand von funktionellen Merkmalen. Diss Bot 397:1–121

    Google Scholar 

  • Bernhardt-Römermann M, Kirchner M, Kudernatsch T, Jakobi G, Fischer A (2006) Changed vegetation composition in coniferous forests near to motorways in Southern Germany: the effects of traffic-born pollution. Env Poll 143:572–581

    Article  CAS  Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738

    Article  CAS  Google Scholar 

  • Bonn S, Poschlod P (1998) Ausbreitungsbiologie der Pflanzen Mitteleuropas. Quelle and Meyer, UTB, Wiesbaden

    Google Scholar 

  • Bonn S, Poschlod P, Tackenberg O (2000) “Diasporus”—a database for diaspore dispersal-concept and applications in case studies for risk assessment. ZÖN 9:89–97

    Google Scholar 

  • Couvreur M, Vandenberghe B, Verheyen K, Hermy M (2004) An experimental assessment of seed adhesivity on animal furs. SSR 14:147–159

    Article  Google Scholar 

  • Diaz S, Noy-Meir I, Cabido M (2001) Can grazing response of herbaceous plants be predicted from simple vegetative traits? J Appl Ecol 38:497–508

    Article  Google Scholar 

  • Ehrlén J, Van Groenendal JM (1998) The trade-off between dispersability and longevity—an important aspect of plant species diversity. Appl Veg Sc 1:29–36

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–262

    Google Scholar 

  • Eriksson A, Eriksson O (1997) Seedling recruitment in semi-natural pastures: the effects of disturbance, seed size, phenology and seed bank. Nord J Bot 17:469–480

    Google Scholar 

  • Eriksson O, Jakobsson A (1998) Abundance, distribution and life histories of grassland plants: a comparative study of 81 species. J Ecol 86:922–933

    Article  Google Scholar 

  • Eriksson O, Jakobsson A (1999) Recruitment trade-offs and the evolution of dispersal mechanisms in plants. Evol Ecol 13:411–423

    Article  Google Scholar 

  • Fiedler PL, Ahouse JJ (1992) Hierarchies of cause: toward an understanding of rarity in vascular plant species. In: Fiedler PL, Jain SK (eds) Conservation biology—the theory and practice of nature conservation, preservation and management. Chapman & Hall, New York, London

    Google Scholar 

  • Fischer M (1998) Über die Ursache der Gefährdung lokaler Pflanzenpopulationen. Bauhinia 12:9–21

    Google Scholar 

  • Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737

    Article  Google Scholar 

  • Fischer SF, Poschlod P, Beinlich B (1996) Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J Appl Ecol 33:1206–1222

    Article  Google Scholar 

  • Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorous gradients. J Ecol 88:964–977

    Article  Google Scholar 

  • Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243

    Article  Google Scholar 

  • Graae BJ (2002) The role of epizoochorous seed dispersal of forest plant species in a fragmented landscape. SSR 12:113–121

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester, New York, Brisbane, Toronto

    Google Scholar 

  • Jensen K, Gutekunst K (2003) Effects of litter on establishment of grassland plant species: the role of seed size and successional status. BAE 4:579–587

    Google Scholar 

  • Kahmen S (2004) Plant trait responses to grassland management and succession. Diss Bot 328:1–122

    Google Scholar 

  • Kahmen S, Poschlod P (2004) Plant functional trait responses to grassland succession over 25 years. J Veg Sci 15:21–32

    Article  Google Scholar 

  • Knevel IC, Bekker RM, Bakker JP, Kleyer M (2003) Life-history traits of the Northwest European Flora: the LEDA database. J Veg Sci 14:611–614

    Article  Google Scholar 

  • Knevel IC, Bekker RM, Kunzmann D, Stadler M, Thompson K (2005) The LEDA traitbase collecting and measuring standards of life-history traits of the Northwest European flora. LEDA Traitbase project online publication. www.leda-traitbase.org. Cited 5 March 2007

  • Korneck D, Schnittler M, Klingenstein F, Ludwig G, Takla M, Bohn U, May R (1998) Warum verarmt unsere Flora? Auswertung der Roten Liste der Farn- und Blütenpflanzen Deutschlands. Schrreihe Vegkd 29:299–444

    Google Scholar 

  • Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269

    Article  Google Scholar 

  • Lavergne S, Thuiller W, Molina J, Debussche M (2005) Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region. J Biogeogr 32:799–811

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lavorel S, McIntyre S, Grigulis K (1999) Plant response to disturbance in a Mediterranean grassland: how many functional groups? J Veg Sci 10:661–672

    Article  Google Scholar 

  • Matlack GR (2005) Slow plants in a fast forest: local dispersal as a predictor of species frequencies in a dynamic landscape. J Ecol 93:50–59

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) Pc-Ord-multivariate analysis of ecological data. MjM Software, Gleneden Beach

    Google Scholar 

  • McIntyre S, Diaz S, Lavorel S, Cramer W (1999) Plant functional types and disturbance dynamics—introduction. J Veg Sci 10:604–608

    Article  Google Scholar 

  • Moles AT, Westoby M (2004) Seedling survival and seed size: a synthesis of the literature. J Ecol 92:372–383

    Article  Google Scholar 

  • Oberdorfer E (1978) Süddeutsche Pflanzengesellschaften. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Olesen JM, Jain SK (1994) Fragmented plant populations and their lost interactions. In: Loeschke V, Tomiuk J, Jain SK (eds) Conservation Genetics. Birkhäuser Verlag, Basel

    Google Scholar 

  • Pakeman RJ (2004) Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. J Ecol 92:893–905

    Article  Google Scholar 

  • Poschlod P, Bonn S (1998) Changing dispersal processes in central European landscape since the last ice age: an explanation for the actual decrease of plant species richness in different habitats? Acta Bot Neerl 47:27–44

    Google Scholar 

  • Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands-lessons from the distant and recent past. Biol Conserv 104:361–376

    Article  Google Scholar 

  • Poschlod P, Kiefer S, Tränkle U, Fischer S, Bonn S (1998) Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl Veg Sci 1:75–90

    Article  Google Scholar 

  • Poschlod P, Kleyer M, Tackenberg O (2000) Databases on life history traits as a tool for risk assessment in plant species. ZÖN 9:3–18

    Google Scholar 

  • Poschlod P, Kleyer M, Jackel AK, Dannemann A, Tackenberg O (2003) BIOPOP—a database of plant traits and internet application for nature conservation. Folia Geobot Phytotaxon 38:263–271

    Article  Google Scholar 

  • Poschlod P, Tackenberg O, Bonn S (2004). Plant dispersal potential and its relation to species frequency and coexistence. In: van der Maarel E (ed) Vegetation Ecology. Blackwell, London

    Google Scholar 

  • Pywell RF, Bullock JM, Roy DB, Warman L, Walker KJ, Rothery P (2003) Plant traits as predictors of performance in ecological restoration. J Appl Ecol 40:65–77

    Article  Google Scholar 

  • Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, Chichester

    Google Scholar 

  • Ringler A (1995) Einführung-Ziele der Landschaftspflege in Bayern. Bayerisches Staatsministerium für Landesentwicklung und Umweltfragen und Bayerische Akademie für Naturschutz und Landschaftspflege, München

    Google Scholar 

  • Römermann C (2006) Patterns and processes of plant species frequency and life-history traits. Dissertation Botanicae 402, 117p

  • Römermann C, Tackenberg O, Poschlod P (2005a) How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits. Oikos 110:219–30

    Article  Google Scholar 

  • Römermann C, Tackenberg O, Poschlod P (2005b) Dispersability traits. In: Knevel K, Bekker RK, Kurtmann D, Stadler M, Thompson K (eds) The LEDA traitbase collecting and measuring standards of life-history traits of the North West European flora. http://www.leda-traitbase.org

  • Römermann C, Tackenberg O, Scheuerer M, May R, Poschlod P (2007) Predicting habitat distribution and frequency from plant species co-occurrence data. J Biogeogr 34:1041–1052

    Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Smart SM, Bunce RGH, Marrs R, LeDuc M, Firbank LG, Maskell LC, Scott WA, Thompson K, Walker KJ (2005) Large-scale changes in the abundance of common higher plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: Tests of hypothesised changes in trait representation. Biol Conserv 124:355–371

    Article  Google Scholar 

  • Tackenberg O, Römermann C, Poschlod P, Thompson K (2006) What does diaspore morphology tell us about external animal dispersal? Evidence from standardized experiments measuring seed retention on animal coats. BAE 7:45–58

    Google Scholar 

  • Thompson K (1994) Predicting the fate of temperate species in response to human disturbance and global change. In: Boyle TJB, Boyle CEB (eds) Biodiversity, temperate ecosystems and global change. Springer, Berlin

    Google Scholar 

  • Walker KJ, Preston CD (2006) Ecological predictors of extinction risk in the flora of lowland England, UK. Biodivers Conserv 15:1913–1942

    Article  Google Scholar 

  • Welk E (2002) Arealkundliche Analyse und Bewertung der Schutzrelevanz seltener und gefährdeter Gefäßpflanzen Deutschlands. Schrreihe Vegkd 37:1–337

    Google Scholar 

  • Weller SG (1994) The relationship of rarity to plant reproductive biology. In: Bowles ML, Whelan CJ (ed) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Chicago

    Google Scholar 

  • Westoby M (1998) A leaf-height-seed LHS. Plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Willems JH, Peet RK, Bik L (1993) Changes in chalk-grassland structure and species richness resulting from selective nutrient additions. J Veg Sci 4:203–212

    Article  Google Scholar 

  • Williams NSG, Morgan JW, McDonnell MJ, McCarthy MA (2005) Plant traits and local extinctions in natural grasslands along an urban-rural gradient. J Ecol 93:1203–1213

    Article  Google Scholar 

  • Willson MF (1993) Dispersal mode, seed shadows, and colonization patterns. Vegetatio 107/108:261–280

    Google Scholar 

  • Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J Ecol 87:85–97

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all members and contributors of the LEDA-traitbase (www.leda-traitbase.org) for providing species trait data, especially J. Klimešová (data on clonal species) and D. Kunzmann (data on SLA). We thank all contributors of the floristic mapping of Germany and the German Phytodiversity Network (NetPhyD) for providing species distribution data. M. Bernhardt-Römermann gave useful comments on the manuscript. Research was supported by the European Commission (LEDA-project, EVR1-CT-2002-40022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Römermann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Römermann, C., Tackenberg, O., Jackel, AK. et al. Eutrophication and fragmentation are related to species’ rate of decline but not to species rarity: results from a functional approach. Biodivers Conserv 17, 591–604 (2008). https://doi.org/10.1007/s10531-007-9283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9283-2

Keywords

Navigation