Biodiversity and Conservation

, Volume 17, Issue 2, pp 407–418 | Cite as

Dinoflagellate diversity and distribution

  • F. J. R. Taylor
  • Mona Hoppenrath
  • Juan F. Saldarriaga
Original Paper

Abstract

Dinoflagellates are common to abundant in both marine and freshwater environments. They are particularly diverse in the marine plankton where some cause “red tides” and other harmful blooms. More than 2,000 extant species have been described, only half of which are photosynthetic. They include autotrophs, mixotrophs and grazers. They are biochemically diverse, varying in photosynthetic pigments and toxin production ability. Some are important sources of bioluminescence in the ocean. They can host intracellular symbionts or be endosymbionts themselves. Most of the photosynthetic “zooxanthellae” of invertebrate hosts are mutualistic dinoflagellate symbionts, including all those essential to reef-building corals. Roughly 5% are parasitic on aquatic organisms. The fossil record, consisting of more than 2,500 species, shows a rapid radiation of cysts, starting in the Triassic, peaking in the Cretaceous, and declining throughout the Cenozoic. Marine species with a benthic, dormant cyst stage are confined to the continental shelf and fossil cysts can be used as markers of ancient coastlines. Northern and southern hemispheres contain virtually identical communities within similar latitudes, separated by a belt of circumtropical species. A few endemics are present in tropical and polar waters. Some benthic dinoflagellates are exclusively tropical, including a distinct phycophilic community, some of which are responsible for ciguatera fish poisoning. In lakes chemical and grazing effects can be important. Predatory dinoflagellates co-occur with their prey, often diatoms.

Keywords

Alveolate Dinoflagellates Dinokaryon Dinophyceae Distribution Fossil Morphospecies Resting cyst 

References

  1. Baldauf SL, Roger AJ, Wenk-Siefert I et al (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977PubMedCrossRefGoogle Scholar
  2. Bourrelly P (1970) Les algues d’eau douce. Initiation à la systématique. Tome III: Les algues bleues et rouges. Les Eugléniens, Peridiniens et Cryptomonadines. Éditions N. Boubée and Cie, ParisGoogle Scholar
  3. Bujak JP, Williams GL (1981) The evolution of dinoflagellates. Can J Bot 59:2077–2087CrossRefGoogle Scholar
  4. Cachon J, Cachon M (1987) Parasitic dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:571–610Google Scholar
  5. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366PubMedCrossRefGoogle Scholar
  6. Cembella AD, Taylor FJR (1985) Biochemical variability within the Protogonyaulax tamarensis/catenella species complex. In: Anderson DM, White AW, Baden DG (eds) Toxic dinoflagellates. Elsevier, Holland, pp 55–60Google Scholar
  7. Cembella AD, Taylor FJR (1986) Electrophoretic variability within the Protogonyaulax tamarensis/catenella species complex: pyridine linked dehydrogenases. Biochem System Ecol 14:311–323CrossRefGoogle Scholar
  8. Cembella AD, Sullivan JJ, Boyer GG, Taylor FJR, Andersen RJ (1987) Variation in paralytic shellfish toxin within the Protogonyaulax tamarensis/catenella species complex; red tide dinoflagellates. Biochem System Ecol 15:171–186CrossRefGoogle Scholar
  9. Dolan J (2005) An introduction to the biogeography of aquatic microbes. Aquat Microb Ecol 41:30–48CrossRefGoogle Scholar
  10. Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams DL (1993) A classification of living and fossil dinoflagellates. Am Mus Nat Hist, Micropal Spec Publ 7Google Scholar
  11. Fensome RA, MacRae RA, Moldowan JM, Taylor FJR, Williams GL (1996) The early Mesozoic radiation of dinoflagellates. Paleobiol 22:329–338Google Scholar
  12. Fensome RA, Saldarriaga JF, Taylor FJR (1999) Dinoflagellate phylogeny revisited: reconciling morphological and molecular-based phylogenies. Grana 38:66–80Google Scholar
  13. Foissner W (1999) Protist diversity: estimates of the near-imponderable. Protist 150:363–368PubMedCrossRefGoogle Scholar
  14. Gaines G, Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:224–268Google Scholar
  15. Gómez F (2005) A list of dinoflagellates in the world oceans. Acta Bot Croatica 84:129–212Google Scholar
  16. Gómez F (2006) Endemic and Indo-Pacific plankton in the Mediterranean Sea: a study based on dinoflagellate records. J Biogr 33:261–270CrossRefGoogle Scholar
  17. Goodman DK (1987) Dinoflagellate cysts in ancient and modern sediments. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:649–722Google Scholar
  18. Greuet C (1987) Complex organelles. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:119–142Google Scholar
  19. Hallegraeff GM, Bolch CJ (1991) Transport of diatom and dinoflagellate resting cysts via ship’s ballast water. Mar Pollut Bull 22:27–30CrossRefGoogle Scholar
  20. Hallegraeff GM, Bolch CJ (1992) Transport of diatom and dinoflagellate resting spores in ships ballast water: implications for plankton biogeography and aquaculture. J Plankton Res 14:1067–1084CrossRefGoogle Scholar
  21. Head M (1996) Modern dinoflagellate cysts and their biological affinities. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. Dallas, USA, pp 1197–1248Google Scholar
  22. Hoppenrath M, Leander BS (2007a) Character evolution in polykrikoid dinoflagellates. J Phycol 43:366–377CrossRefGoogle Scholar
  23. Hoppenrath M, Leander BS (2007b) Morphology and phylogeny of the pseudocolonial dinoflagellates Polykrikos lebourae and Polykrikos herdmanae n. sp. Protist 158:209–227PubMedCrossRefGoogle Scholar
  24. John U, Fensome RA, Medlin LK (2003) The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distribution within the Alexandrium tamarense “species complex” (Dinophyceae). Mol Biol Evol 20:1015–1027PubMedCrossRefGoogle Scholar
  25. Lilly E, Kulis D, Gentien P et al (2002) Paralytic shellfish poisoning in France linked to a human-introduced strain of Alexandrium catenella from the western Pacific: evidence from DNA and toxin analysis. J Plankt Res 24:443–452CrossRefGoogle Scholar
  26. López-García P, Rodríguez-Valera F, Pedrós-Alió C et al (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic phytoplankton. Nature 409:603–607PubMedCrossRefGoogle Scholar
  27. Lundholm N, Moestrop Ø (2006) The biogeography of harmful algae. In: Granelli E, Turner JT (eds) Ecology of harmful algae. Ecol Stud 189:23–35Google Scholar
  28. Massana R, Guillou L, Díez B et al (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the Ocean. Appl Environ Microbiol 68:4554–4558PubMedCrossRefGoogle Scholar
  29. McMinn A, Scot FJ (2005) 3. Dinoflagellates. In: Scott FJ, Marchant HW (eds) Antarctic marine protists. Austral Biol Res Study, Canberra, pp 202–250Google Scholar
  30. Moldowan JM, Terazina NM (1998) Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian. Science 281:1168–1170PubMedCrossRefGoogle Scholar
  31. Montresor M, Lovejoy C, Orsini L et al (2003) Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol 26:186–194Google Scholar
  32. Moon van-der-Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610PubMedCrossRefGoogle Scholar
  33. Okolodkov YB (1999) An ice-bound planktonic dinoflagellate Peridiniella catenata (Levander) Balech: morphology, ecology and distribution. Bot Mar 42:333–341CrossRefGoogle Scholar
  34. Pollingher U (1987) Freshwater ecosystems. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:502–529Google Scholar
  35. Pross J, Kotthof U, Zonnefeld K (2004) Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Meso- and Cenozoic: potential and limits. Palaentol Zeitschr 78:5–39Google Scholar
  36. Rossignol M (1962) Analyse pollenique de sediments Quaternaires en Israël. II. Sédiments Pleistocénes. Pollen et Spores 4:121–148Google Scholar
  37. Saldarriaga JF, Taylor FJR, Keeling P et al (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204–213PubMedCrossRefGoogle Scholar
  38. Saldarriaga JF, Taylor FJR, Cavalier-Smith T et al (2004) Molecular data and the evolutionary history of dinoflagellates. Eur J Protistol 40:85–111CrossRefGoogle Scholar
  39. Sarjeant WAS (1974) Fossil and living dinoflagellates. Academic Press, LondonGoogle Scholar
  40. Schnepf E, Elbrächter M (1992) Nutritional strategies in dinoflagellates. A review with emphasis on cell biological aspects. Eur J Protistol 28:3–24Google Scholar
  41. Schnepf E, Elbrächter M (1999) Dinophyte chloroplasts and phylogeny —a review. Grana 38:81–97Google Scholar
  42. Scholin CA (1998) Morphological, genetic, and biogeographic relationships of the toxic dinoflagellates Alexandrium tamarense, A. catenella, and A. fundyense. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. NATO ASI Ser G: Ecol Sci 41:13–27Google Scholar
  43. Skovgaard A, Massana R, Balagué V, Saiz E (2005) Phylogenetic position of the copepod-infesting parasite Syndinium turbo (Dinoflagellata, Syndinea). Protist 156:413–423PubMedCrossRefGoogle Scholar
  44. Spector D (1984) Dinoflagellates. Academic Press, OrlandoGoogle Scholar
  45. Steidinger KA, Burkholder JM, Glasgow HB et al (1996) Pfiesteria piscicida gen. et sp. nov. (Pfiesteriaceae), a new toxic dinoflagellate with a complex life cycle and behavior. J Phycol 32:157–164CrossRefGoogle Scholar
  46. Taylor FJR (1976) Dinoflagellates from the International Indian Ocean Expedition. Biblthca Bot 132:1–222 + 46 platesGoogle Scholar
  47. Taylor FJR (1984) Toxic dinoflagellates: taxonomic and biogeographic aspects with emphasis on Protogonyaulax. In: Ragelis E (ed) Seafood toxins. Am Chem Soc Symp Ser 262:77–97Google Scholar
  48. Taylor FJR (1985) The taxonomy and relationships of red tide flagellates. In: Anderson DM, White AW, Baden DG (eds) Toxic dinoflagellates. Elsevier, Holland, pp 11–26Google Scholar
  49. Taylor FJR (ed) (1987a) The Biology of Dinoflagellates. Bot Monogr 21:i–xii, 1–785Google Scholar
  50. Taylor FJR (1987b) General group characteristics, special features of interest; and a short history of dinoflagellate study. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:1–23Google Scholar
  51. Taylor FJR (1987c) Dinoflagellate morphology. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:24–91Google Scholar
  52. Taylor FJR (1987d) Dinoflagellate ecology: general and marine ecosystems. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:398–502Google Scholar
  53. Taylor FJR (1992) The species problem and its impact on harmful phytoplankton studies, with emphasis on dinoflagellate morphology. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, pp 81–86Google Scholar
  54. Taylor FJR (2001) Conference overview: harmful algal bloom studies enter the new millenium. In: Hallegraeff GM, Blackburn SI, Bolch CJ et al (eds) Harmful algal blooms 2000. Proc 9th Int Conf Harmful Algal Blooms, IOC, UNESCO, Paris, pp 3–5Google Scholar
  55. Taylor FJR (2004) Harmful dinoflagellate species in space and time and the value of morphospecies. In: Steidinger KA, Landsberg JH, Tomas CR et al (eds) Harmful algae 2002. Fla Fish Wildl. Cons Comm, Fla Inst Ocean, IOC UNESCO, St. Petersburg, Fla, pp 555–559Google Scholar
  56. Trench RK (1987) Dinoflagellates in non-parasitic symbioses. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:530–570Google Scholar
  57. Wyatt T (1995) Global spreading, time series, models and monitoring. In: Lassus P, Arzul G, Erard-LeDenn F et al (eds) Harmful marine algal blooms. Lavoisier, Paris, pp 755–764Google Scholar
  58. Zeitzschel B (1990) Zoogeography of marine protozoa: an overview emphasizing distribution of planktonic forms. In: Capriulo GM (ed) Ecology of marine protozoa. Oxford University Press, Oxford, pp 139–185Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • F. J. R. Taylor
    • 1
    • 2
  • Mona Hoppenrath
    • 1
  • Juan F. Saldarriaga
    • 1
  1. 1.Department of BotanyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations