Skip to main content

Advertisement

Log in

Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Habitat isolation is one of the most important factors endangering the biodiversity, but little research has been done with vascular epiphytes. In order to understand the effect of isolation on the epiphyte community, we studied epiphyte diversity on three plots in a forest fragment, two riparian forest fragments, and in isolated pastureland trees. We found 118 vascular epiphyte species. On forest plots, both epiphyte richness per tree (Stree) and species turnover rate within trees (βtree) registered the highest values, although the lowest Stree diversity was also found there; additionally inside the forest were host species with clearly different epiphyte community. Stree and βtree diversities of riparian fragments behaved similarly to those of the forest. Isolated trees had the second highest Stree diversity, although their βtree diversity was the lowest. In the forest plots were both, the highest and lowest expected accumulated richness (α diversity); on riparian fragments it was intermediate, and the second lowest α diversity was registered for isolated trees. Species turnover rate among plots (β) was high and was associated with both, isolation and a distance gradient from permanent water sources. The epiphyte community on isolated trees was clearly different to the other habitats. Results suggest that deforestation eliminated dry areas and specific hosts that were important for the maintenance of epiphyte species richness. In pastureland trees the epiphyte βtree diversity diminished, suggesting a simplification of the environment for epiphytes and causing a low α diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguirre-León E (1992) Vascular epiphytes of Mexico: preliminary inventory. Selbyana 13:72–76

    Google Scholar 

  • Benavides AM, Duque AJ, Duivenvoorden JF, Vasco GA, Callejas R (2005) A first quantitative census of vascular epiphytes in rain forest of Colombian Amazonia. Biodivers Conserv 14:739–758

    Article  Google Scholar 

  • Benavides AM, Wolf JHD, Duivenvoorden JF (2006) Recovery and succession of epiphytes in upper Amazonian fallows. J Trop Ecol 22:705–717

    Article  Google Scholar 

  • Barthlott W, Schmit-Neurerburg V, Nieder J, Engwald S (2001) Diversity and abundance of vascular epiphytes. A comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecol 152:145–156

    Article  Google Scholar 

  • Bogh A (1992) Composition and distribution of the vascular epiphyte flora of an Ecuadorian montane rain forest. Selbyana 13:25–34

    Google Scholar 

  • Colwell RK (1997) EstimateS: Statistical estimation of species richness and shared species from samples. Version 5 user’s guide and application. University of Connecticut, Storrs, US

    Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Phil Trans R Soc Lond Ser B Biol Sci 345:101–118

    Article  CAS  Google Scholar 

  • Dunn RR (2000) Bromeliad communities in isolated trees and three successional stages of an Andean cloud forest in Ecuador. Selbyana 21:137–143

    Google Scholar 

  • Espejo-Serna A, López-Ferrari AR (1999) Mexican Bromeliaceae: diversity and notes on their conservation. Harv Pap Bot 4:119–128

    Google Scholar 

  • Flores-Palacios A (2003) El Efecto de la Fragmentación del Bosque Mesófilo en la Comunidad de Plantas Epífitas Vasculares. Dissertation. Instituto de Ecología A. C

  • Flores-Palacios A, García-Franco JG (2001) Sampling methods for vascular epiphytes: their effectiveness in recording species richness and frequency. Selbyana 22:181–191

    Google Scholar 

  • Flores-Palacios A, García-Franco JG (2004) Effect of isolation on the structure and nutrient content of oak epiphyte communities. Plant Ecol 173:259–269

    Article  Google Scholar 

  • Flores-Palacios A, García-Franco JG (2006) The relationship between tree size and epiphyte richness: testing four different hypotheses. J Biogeogr 33:323–330

    Article  Google Scholar 

  • García-Franco JG (1996) Distribución de epífitas vasculares en matorrales costeros de Veracruz, México. Acta Bot Mex 37:1–9

    Google Scholar 

  • Gardette E (1996) Microhabitat of epiphytic fern communities in large lowland rain forest plots in Sumatra. In: Camus JM, Gibby M, Johns RJ (eds) Pteridology in perspective. Royal Botanical Garden, London

    Google Scholar 

  • Gauch HJ Jr (1982) Multivariate analysis in community ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233

    Article  Google Scholar 

  • Gering JC, Crist TO, Veech JA (2003) Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of Biodiversity. Conserv Biol 17:488–499

    Article  Google Scholar 

  • Guevara S, Laborde J, Sanchez G (1998) Are isolated remnant trees in pastureland a fragmented canopy? Selbyana 19:34–43

    Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele C (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Hietz P, Hietz-Seifert U (1995a) Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. J Veg Sci 6:487–498

    Article  Google Scholar 

  • Hietz P, Hietz-Seifert U (1995b) Structure and ecology of epiphyte communities of a cloud forest in central Veracruz, Mexico. J Veg Sci 6:719–728

    Article  Google Scholar 

  • Hietz-Seifert U, Hietz P, Guevara S (1996) Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biol Conserv 75:103–111

    Article  Google Scholar 

  • Ibisch PL, Boeger A, Nieder J, Barthlott W (1996) How diverse are neotropical epiphytes? An analysis based on the “catalogue of the flowering plants and gymnosperms of Peru”. Ecotropica 2:13–28

    Google Scholar 

  • Jepson J (1998) The tree climber’s companion. J Jepson, Rt. 1. Box 546, Longville, US

  • Johansson D (1974) Ecology of vascular epiphytes in west African rain forest. Acta Phytogeogr Suec 59:1–130

    Google Scholar 

  • Kress WJ (1986) The systematic distribution of vascular epiphytes: an update. Selbyana 9:2–22

    Google Scholar 

  • Krömer T, Gradstein SR (2003) Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24:190–195

    Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Leimbeck RM, Balsvev H (2001). Species richness and abundance of epiphytic Araceae on adjacent floodplain and upland forest in Amazonian Ecuador. Biodivers Conserv 10:1579–1593

    Article  Google Scholar 

  • Loreau M (2000) Are communities saturated? On the relationship between α, β and γ diversity. Ecol Lett 3:73–76

    Article  Google Scholar 

  • Mehltreter K, Flores-Palacios A, García-Franco JG (2005) Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. J Trop Ecol 21:651–660

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Nkongmeneck BA, Lowman MD, Atwood JT (2002) Epiphyte diversity in primary and fragmented forest of Cameroon, Central Africa: a preliminary survey. Selbyana 23:121–130

    Google Scholar 

  • Ojala E, Mönkkönen M, Inkeröinen J (2000) Epiphytic bryophytes on European aspen Populus tremula in old-growth forest in northeastern Finland and in adjacent sites in Russia. Can J Bot 78:529–536

    Article  Google Scholar 

  • Pedraza RA (2003) Arboles nativos para plantaciones: una estrategia de restauración en áreas deforestadas. Dissertation, Instituto de Ecología A. C

  • Rzedowski J (1996) Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Bot Mex 35:25–44

    Google Scholar 

  • Sanford WW (1968) Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. Ecology 56:697–705

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schuettpelz E, Trapnell D (2006) Exceptional epiphyte diversity on a single tree in Costa Rica. Selbyana 27:65–71

    Google Scholar 

  • Shaw DC (2005) Vertical organization of canopy biota. In: Lowman MD, Rinker HB (eds) Forest canopies. Elselvier Academic Press, USA

    Google Scholar 

  • Soberon J, Llorente-Bousquets J (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7:480–488

    Article  Google Scholar 

  • Sudgen AM, Robins RJ (1979) Aspects of the ecology of vascular epiphytes in Colombian Cloud forest, I. The distribution of the epiphytic flora. Biotropica 11:173–188

    Article  Google Scholar 

  • ter Steege H, Cornelissen JC (1989) Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21:331–339

    Article  Google Scholar 

  • Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Whittaker RH, Willis KJ, Field R (2001) Scale and species richness: toward a general hierachical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  • Williams-Linera G (2002) Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodivers Conserv 11:1825–1843

    Article  Google Scholar 

  • Williams-Linera G, Sosa V, Platas T (1995) The fate of epiphytic orchids after fragmentation of a Mexican cloud forest. Selbyana 16:36–40

    Google Scholar 

  • Werner FA, Homeiner J, Gradstein SR (2005) Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of Southern Ecuador. Ecotropica 11:21–40

    Google Scholar 

  • Wolf JHD (2005) The response of epiphytes to anthropogenic disturbance on pine-oak forest in the highlands of Chiapas, Mexico. For Ecol Manage 212:376–393

    Article  Google Scholar 

  • Wolf JHD, Flamenco A (2003) Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. J Biogeogr 30:1–19

    Article  Google Scholar 

  • Zamora-Crescencio P, Castillo-Campos G (1997) Vegetación y flora del municipio de Tlalnelhuayocan, Veracruz. Universidad Veracruzana, Xalapa

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Zotz G, Bermejo P, Dietz H (1999) The epiphyte vegetation of Annona glabra on Barro Colorado Island, Panama. J Biogeogr 26:761–776

    Article  Google Scholar 

Download references

Acknowledgements

V. Vázquez, D. Martínez Burgoa, R. Ortíz Pulido, J. Flores Rivas, J. Tolome and R. Márquez Huitzil helped during field work. M. Palacios R., K. V. Mehltreter, P. Hietz and J. García helped with species identification. The comments and criticisms of S. Valencia, F. Escobar, G. Vázquez, L. Eguiarte, A. Espejo, J. Villalobos, G. Williams-Linera, J. Wolf, K. V. Mehltreter, I. Márquez and two anonymous reviewers improved the MS. The research was supported partially by CONACYT grant to JGGF (no. 1840P-N), and the Departamento de Ecología Funcional, Instituto de Ecología (902–16). An early version was presented by AFP as a part of his PhD thesis at the Instituto de Ecología A. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Flores-Palacios.

Appendix 1

Appendix 1

Epiphyte species list found on three plots of lower montane cloud forest (FE, FI and FR), two riparian fragments (RP and RL) and isolated pastureland trees (IPT). In the columns appear the number of trees (DBH ≥ 20 cm) were each species was registered.

 

FE

FI

FR

RP

RL

IPT

Angiosperms

ARACEAE

Anthurium scandens (Aubl.) Engl. subsp. scandens

3

26

19

18

11

Philodendron advena Schott

2

9

4

4

Syngonium sagittatum G. S. Bunting

2

1

1

3

ARALIACEAE

Oreopanax capitatus (Jacq.) Decne. & Planch.

1

3

11

9

3

O. liebmannii Marchal

1

2

1

O. xalapensis (Kunth) Decne. & Planch.

1

O. sp.

1

BROMELIACEAE

Catopsis nitida (Hook.) Griseb.

11

11

11

4

5

9

C. nutans (Sw.) Griseb.

4

7

11

38

21

11

C. sessiliflora (Ruiz & Pav.) Mez

13

7

15

15

10

43

Racinaea ghiesbreghtii (Baker) M. A. Spencer & L.B. Sm.

18

8

16

5

14

15

Tillandsia butzii Mez

22

22

29

26

27

37

T. deppeana Steud.

1

T. foliosa M. Martens & Galeotti

1

1

3

T. gynmnobotrya Baker

9

2

2

2

T. juncea (Ruiz & Pav.) Poir.

5

2

2

1

9

T. kirchoffiana Wittm.

19

15

32

35

30

23

T. limbata Schltdl.

2

T. lucida E. Morren ex Baker

4

2

9

T. multicaulis Steud.

25

18

30

39

32

34

T. punctulata Schltdl. & Cham.

13

10

21

32

21

45

T. punctulata X T. kirchoffiana

1

1

5

3

T. schiedeana Steud.

5

3

3

5

2

6

T. tricolor Schltdl. & Cham.

2

1

1

2

3

T. usneoides (L.) L.

2

T. viridiflora (Beer) Baker

1

6

29

6

9

T. sp.

4

1

3

1

5

COMMELINACEAE

Gibasis sp.

1

4

5

LORANTHACEAE

Psittacanthus schiedeanus (Schltdl. & Cham.) Blume

4

1

5

12

15

Struthantus sp. 1

3

1

1

6

5

6

Struthantus sp. 2

3

ORCHIDACEAE

Acineta barkeri (Bateman) Lindl.

1

6

6

2

4

Arpophyllum medium Rchb. f.

1

1

Barbosella prorepens (Rchb. F.) Schltr.

1

Brassia verrucosa Lindl.

2

2

2

4

3

Coelia macrostachya Lindl.

2

2

2

Comparettia falcata Poepp. & Endl.

1

2

1

2

Chysis laevis Lindl.

1

2

Dichaea glauca (Sw.) Lindl.

5

10

1

8

1

D. graminoides (Sw.) Lindl.

3

1

D. aff. intermedia Ames & Correll

1

1

D. neglecta Schltr.

4

4

4

Elleanthus cynarocephalus (Rchb. f.) Rchb. f.

3

2

Encyclia candollei (Lindl.) Schltr.

1

1

E. polybulbon (Sw.) Dressler

2

1

Epidendrum laucheanum Rolfe

1

E. parkinsonianum Hook.

1

E. propinquum A. Rich. & Galeotti

1

E. repens Cogn.

3

E. veroscriptum Hágsater

1

2

Isochilus aff. major Cham. & Schltdl.

7

1

2

1

I. sp.

1

1

Jacquiniella leucomelana (Rchb. f.) Schltr.

1

7

2

J. teretifolia (Sw.) Britton & P. Wilson

1

6

20

2

12

3

Laelia anceps Lindl.

1

Lycaste deppei (G. Lodd.) Lindl.

1

2

4

Malaxis excavata (Lindl.) Kuntze

1

Maxillaria cucullata Lindl.

2

3

M. meleagris Lindl.

2

1

M. variabilis Bateman & Lindl.

1

Nidema boothii (Lindl.) Schltr.

1

Oncidium sp.

2

Pleurothallis pachyglossa Lindl.

3

17

3

P. platystylis Schltr

1

4

9

P. tubata (G. Lodd.) Steud.

1

1

P. aff. tribuloides (Sw.) Lindl.

1

1

Prosthechea ochracea (Lindl.) W. E. Higgins

1

1

2

1

P. vitellina (Lindl.) W. E. Higgins

8

9

10

5

3

Rhynchostele cordata (Lindl.) Soto Arenas & Salazar

1

Scaphyglottis livida (Lindl.) Schltr.

1

2

Xylobium foveatum (Lindl.) G. Nicholson

1

PALMAE

Chamaedora tepejilote Liebm. Ex Mart.

1

PIPERACEAE

Peperomia alata Ruiz & Pav.

2

6

6

1

1

P. galioides Kunth

2

6

11

7

8

P. pseudoalpina Trel.

1

1

10

15

22

8

P. sp. 1

15

1

P. sp. 2

1

4

22

1

14

RUBIACEAE

Unknown

1

STAPHYLEACEAE

Turpinia insignis (Kunth.) Tul.

1

VISCACEAE

Phoradendron sp.

1

3

2

18

Pteridophytes

ASPLENIACEAE

Asplenium auriculatum Sw.

1

3

1

A. cuspidatum Lam.

1

A. harpeodes Kunze

1

1

1

A. sphaerosporum A. R. Sm.

1

A. sp.

1

1

GRAMMITIDACEAE

Grammitis leptostoma (Fée) Seym.

1

5

G. pilosissima (M. Martens & Galeotti) C. V. Morton

1

G. sp.

1

HYMENOPHYLLACEAE

Hymenophyllum polyanthos (Sw.) Sw.

1

H. sp.

1

Trichomanes capillaceum L.

1

5

5

T. reptans Sw.

1

LOMARIOPSIDACEAE

Elaphoglossum glaucum T. Moore

1

E. guatemalense (Klotzsch) T. Moore

3

E. lonchophyllum (Fée) T. Moore

4

1

E. vestitum (Schltdl. & Cham.) Schott ex T. Moore

2

1

10

1

9

Peltapteris peltata (Sw.) C. V. Morton

3

1

LYCOPODIACEAE

Huperzia linifolia (L.) Trevis.

5

2

H. myrsinites (Lam.) Trevis.

3

3

3

H. pringlei (Underw. & F. E. Lloyd) Holub.

1

1

H. taxifolia (Sw.) Trevis.

5

3

5

OPHIOGLOSSACEAE

Botrychium virginianum (L.) Sw.

1

1

POLYPODIACEAE

Campyloneurum sp.

2

Pecluma alfredii (Rosenst.) M. G. Price

2

8

16

17

14

Phlebodium areolatum (Humb. & Bonpl. ex Willd.) J. Smith

21

12

30

28

25

29

Pleopeltis angusta var. stenolama (Fée) Farw.

5

5

13

22

8

7

P. crassinervata (Fée) T. Moore

9

9

19

16

12

13

P. mexicana (Fée) Mickel & Beitel

12

8

13

13

9

21

Polypodium adelphum Maxon

1

P. cryptocarpon Fée

1

P. furfuraceum Schltdl. & Cham.

4

5

8

21

14

13

P. lepidotrichum (Fée) Maxon

3

5

11

4

3

6

P. loriceum L.

3

2

18

5

11

P. plebeium Schltdl. & Cham.

9

10

30

28

21

15

P. puberulum Schltdl. & Cham.

1

4

4

3

PSILOTACEAE

Psilotum complanatum Sw.

1

SELAGINELLACEAE

Selaginella martensi Spring

2

1

1

VITTARIACEAE

Vittaria graminifolia Kaulf.

2

6

1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores-Palacios, A., García-Franco, J.G. Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Biodivers Conserv 17, 191–207 (2008). https://doi.org/10.1007/s10531-007-9239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9239-6

Keywords

Navigation