Advertisement

Biodiversity and Conservation

, Volume 17, Issue 9, pp 2115–2137 | Cite as

Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future

  • Edward A. D. Mitchell
  • Daniel J. Charman
  • Barry G. Warner
Original Paper

Abstract

Testate amoebae are an abundant and diverse polyphyletic group of shelled protozoa living in aquatic to moist habitats ranging from estuaries to lakes, rivers, wetlands, soils, litter, and moss habitats. Owing to the preservation of shells in sediments, testate amoebae are useful proxy indicators complementary to long-established indicators such as pollen and spores or macrofossils. Their primary use to date has been for inferring past moisture conditions and climate in ombrotrophic peatlands and, to a lesser extent, to infer pH in peatlands and the trophic or nutrient status of lakes. Recent research on these organisms suggests other possible uses in paleoecology and ecology such as sea-level reconstruction in estuarine environments, as indicators of soil or air pollution, and monitoring recovery of peatland. We review the past and present use of testate amoebae, the challenges in current research, and provide some ideas on future research directions.

Keywords

Testate amoebae Protozoa Peatland Sphagnum Paleoecology Bioindicators Community ecology Transfer functions Peatland management Restoration ecology 

Notes

Acknowledgements

Edward Mitchell is supported by Swiss NSF project n° 205321-109709/1 and was supported by EU project RECIPE, partly funded by the European Commission (n° EVK2-2002-00269) and partly, for the Swiss partners, by the State Secretariat for Education and Research, Switzerland. SEM illustrations were produced at the SEM lab of the University of Alaska Anchorage under the direction of Dr. Jerry Kudenov. Jan Pawlowski of the University of Geneva provided critical comments on parts of the manuscript. The critical comments of two anonymous reviewers on the manuscript are gratefully acknowledged.

References

  1. Balik V (1991) The effect of the road traffic pollution on the communities of testate amoebae (Rhizopoda, Testacea) in Warsaw (Poland). Acta Protozool 30:5–11Google Scholar
  2. Beyens L, Chardez D (1987) Evidence from testate amoebae for changes in some local hydrological conditions between c. 5000 BP and c. 3800 BP on Edgeøya (Svalbard). Polar Res 5:165–169CrossRefGoogle Scholar
  3. Beyens L, Chardez D (1995) An annotated list of testate amoebae observed in the Arctic between the longitudes 27 degrees E and 168 degrees W. Arch Protistenkd 146:219–233Google Scholar
  4. Beyens L, Chardez D, Delandtsheer R, Debaere D (1986) Testate amoebae communities from aquatic habitats in the Arctic. Polar Biol 6:197–205CrossRefGoogle Scholar
  5. Blundell A, Barber K (2005) A 2800-year palaeoclimatic record from Tore Hill Moss, Strathspey, Scotland: the need for a multi-proxy approach to peat-based climate reconstructions. Quatern Sci Rev 24:1261–1277CrossRefGoogle Scholar
  6. Bobrov AA, Charman DJ, Warner BG (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. Protist 150:125–136PubMedCrossRefGoogle Scholar
  7. Bobrov AA, Mazei Y (2004) Morphological variability of testate amoebae (Rhizopoda: Testacealobosea: Testaceafilosea) in natural populations. Acta Protozool 43:133–146Google Scholar
  8. Boeuf O, Gilbert D (1997) Presence of testate amoebae (genus:Trinema), in the Upper Pliocene, discovered in the locality of Chilhac (Haute-Loire, France). Comptes rendus de l’academie des sciences Série II Fascicule a- Sciences de la Terre et des planetes 325:623–627Google Scholar
  9. Bonnet L (1958) Les thécamoebiens des Bouillouses. Bulletin de la Société d’Histoire Naturelle de Toulouse 93:529–543Google Scholar
  10. Bonnet L (1977) Thécamoebiens et potentialités truffières des sols. In: Communication de la 16ème Réunion du Groupement des Protistologues de Langue Française, 21 ppGoogle Scholar
  11. Bonnet L (1979) Thécamoebiens Rhizopoda Testacea et potentialités truffières des sols. Nouvelles données. Mushroom Sci 10:1013–1038Google Scholar
  12. Booth RK (2001) Ecology of testate amoebae (Protozoa) in two lake superior coastal wetlands: implications for paleoecology and environmental monitoring. Wetlands 21:564–576CrossRefGoogle Scholar
  13. Booth RK (2002) Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J Paleolimnol 28:329–348CrossRefGoogle Scholar
  14. Booth RK, Jackson ST (2003) A high resolution record of late-Holocene moisture variability from a Michigan raised bog, USA. The Holocene 13:863–876CrossRefGoogle Scholar
  15. Booth RK, Jackson ST, Gray CED (2004) Paleoecology and high-resolution paleohydrology of a kettle peatland in upper Michigan. Quatern Res 61:1–13CrossRefGoogle Scholar
  16. Bovee EC (1985) Class Lobosea Carpenter, 1861. In: Lee JJ, Hutner SH, Bovee EC (eds) An illustrated guide to the protozoa. Allen University Press, Lawrence, Kansas, pp 158–211Google Scholar
  17. Burbidge SM, Schröder-Adams CJ (1998) Thecamoebians in Lake Winnipeg: a tool for Holocene paleolimnology. J Paleolimnol 19:309–328CrossRefGoogle Scholar
  18. Buttler A, Warner BG, Grosvernier P, Matthey Y (1996) Vertical patterns of testate amoebae (Protozoa: Rhizopoda) and peat forming vegetation on cutover bogs in the Jura, Switzerland. New Phytologist 134:371–382CrossRefGoogle Scholar
  19. Caseldine C, Gearey B (2005) A multiproxy approach to reconstructing surface wetness changes and prehistoric bog bursts in a raised mire system at Derryville Bog, Co. Tipperary, Ireland. The Holocene 15:585CrossRefGoogle Scholar
  20. Cash J, Wailes H (1915) The British Freshwater Rhizopoda and Heliozoa Ray Society, LondonGoogle Scholar
  21. Cavalier-Smith T, Chao EE (1997) Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. Arch Protistenkd 147:227–236Google Scholar
  22. Chacharonis P (1954) Observations on the ecology of protozoa associated with Sphagnum. Dissertation, Ohio State UniversityGoogle Scholar
  23. Chacharonis P (1956) Observations on the ecology of protozoa associated with Sphagnum. J Protozool 3:11Google Scholar
  24. Chardez D (1969) Le genre Phryganella Penard (Protozoa, Rhizopoda, Testacea). Bulletin de la Station de Recherche Agronomique de Gembloux 4:315–322Google Scholar
  25. Chardez D (1989) On the multiplication of Centropyxis discoides and the medium influence on the morphology of the test (Rhizopoda Testacea). Acta Protozool 28:31–34Google Scholar
  26. Chardez D (1991) The Genus Cyphoderia Schlumberger, 1845 (Protozoa, Rhizopoda, Testacea). Acta Protozool 30:49–53Google Scholar
  27. Charman DJ (1997) Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. J Royal Soc NZ 27:465–483Google Scholar
  28. Charman DJ (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quatern Sci Rev 20:1753–1764CrossRefGoogle Scholar
  29. Charman DJ, Brown AD, Hendon D, Karofeld E (2004) Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites. Quatern Sci Rev 23:137–143CrossRefGoogle Scholar
  30. Charman DJ, Caseldine C, Baker A, Gearey B, Hatton J, Proctor C (2001) Paleohydrological records from peat profiles and speleothems in Sutherland, northwest Scotland. Quatern Res 55:223–234CrossRefGoogle Scholar
  31. Charman DJ, Hendon D (2000) Long-term changes in soil water tables over the past 4500 years: relationships with climate and North Atlantic atmospheric circulation and sea surface temperature. Clim Change 47:45–59CrossRefGoogle Scholar
  32. Charman DJ, Hendon D, Packman S (1999) Multiproxy surface wetness records from replicate cores on an ombrotrophic mire: implications for Holocene palaeoclimate records. J Quatern Sci 14:451–463CrossRefGoogle Scholar
  33. Charman DJ, Hendon D, Woodland WA (2000) The identification of testate amoebae (Protozoa: Rhizopoda) in peats Quaternary Research Association, LondonGoogle Scholar
  34. Charman DJ, Roe HM, Gehrels WR (1998) The use of testate amoebae in studies of sea-level change: a case study from the Taf Estuary, south Wales, UK. The Holocene 8:209–218CrossRefGoogle Scholar
  35. Charman DJ, Roe HM, Gehrels WR (2002) Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables. J Quatern Sci 17:387–409CrossRefGoogle Scholar
  36. Charman DJ, Warner BG (1992) Relationship between testate amoebae (Protozoa, Rhizopoda) and microenvironmental parameters on a forested peatland in Northeastern Ontario. Can J Zool-Revue Canadienne De Zoologie 70:2474–2482CrossRefGoogle Scholar
  37. Charman DJ, Warner BG (1997) The ecology of testate amoebae (Protozoa: Rhizopoda) in oceanic peatlands in Newfoundland, Canada: modelling hydrological relationships for palaeoenvironmental reconstruction. Ecoscience 4:555–562Google Scholar
  38. Chiverrell RC (2001) A proxy record of late Holocene climate change from May Moss, northeast England. J Quatern Sci 16:9–29CrossRefGoogle Scholar
  39. Clarholm M (1981) Protozoan grazing of bacteria in soil - Impact and importance. Microb Ecol 7:343–350CrossRefGoogle Scholar
  40. Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187CrossRefGoogle Scholar
  41. Clarholm M (2002) Bacteria and protozoa as integral components of the forest ecosystem - their role in creating a naturally varied fertility. Antonie van Leeuwenhoek J Microbiol 81:309–318PubMedCrossRefGoogle Scholar
  42. Clarhom M, Rosswall T (1980) Biomass and turnover of bacteria in a peat forest soil and a peat. Soil Biol Biochem 12:49–57CrossRefGoogle Scholar
  43. Corbet SA (1973) An illustrated introduction to the testate rhizopods in Sphagnum, with special reference to the area around Malham Tarn, Yorkshire. Field Studies 3:801–838Google Scholar
  44. Coûteaux M-M, Pussard M (1983) Nature du régime alimentaire des protozoaires du sol. In: LeBrun P, André HM, De Medts A, Grégoire-Wibo C, Wauthy G (eds) new trends in soil biology, proceedings of the VIII. International colloquium of soil biology, Louvain-la-Neuve (Belgium). pp 179–195Google Scholar
  45. Dalby AP, Kumar A, Moore JM, Patterson RT (2000) Preliminary survey of arcellaceans (thecamoebians) as limnological indicators in tropical Lake Sentani, Irian Jaya, Indonesia. J Foraminiferal Res 30:135–142CrossRefGoogle Scholar
  46. Darling KF, Kucera M, Pudsey CJ, Wade CM (2004) Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. Proc Nat Acad Sci USA 101:7657–7662PubMedCrossRefGoogle Scholar
  47. Darling KF, Wade CM, Stewart IA, Kroon D, Dingle R, Brown AJL (2000) Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminfers. Nature 405:43–47PubMedCrossRefGoogle Scholar
  48. Davis SR, Wilkinson DM (2004) The conservation management value of testate amoebae as ‘restoration’ indicators: speculations based on two damaged raised mires in northwest England. The Holocene 14:135–143CrossRefGoogle Scholar
  49. Deflandre G (1928) Le genre Arcella Ehrenberg. Morphologie-Biologie. Essai phylogénétique et systématiqe. Arch Protistenkd 64:152–287Google Scholar
  50. Deflandre G (1929) Le genre Centropyxis Stein. Arch Protistenkd 67:322–375Google Scholar
  51. Deflandre G (1936) Etude monographique sur le genre Nebela Leidy. Ann Protistol 5:201–286Google Scholar
  52. Dwyer RB, Mitchell FJG (1997) Investigation of the environmental impact of remote volcanic activity on North Mayo, Ireland, during the mid-Holocene. The Holocene 7:113–118CrossRefGoogle Scholar
  53. Earle LR (2000) The development of an unusual peat-accumulating bofedal ecosystem in the Chilean Altiplano. M.Sc. thesis, University of WaterlooGoogle Scholar
  54. Ellison RL (1995) Paleolimnological analysis of ullswater using testate amebas. J Paleolimnol 13:51–63CrossRefGoogle Scholar
  55. Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063PubMedCrossRefGoogle Scholar
  56. Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400:828CrossRefGoogle Scholar
  57. Finlay BJ, Esteban GF, Clarke KJ, Olmo JL (2001) Biodiversity of terrestrial protozoa appears homogeneous across local and global spatial scales. Protist 152:355–366PubMedCrossRefGoogle Scholar
  58. Finlay BJ, Esteban GF, Olmo JL, Tyler PA (1999) Global distribution of free-living microbial species. Ecography 22:138–144CrossRefGoogle Scholar
  59. Finlay BJ, Fenchel T (1999) Global Diversity and body size. Answer to Siemann, Tilmann and Haarstad 1999. Nature 383:132–133CrossRefGoogle Scholar
  60. Foissner W (1997a) Global soil ciliate (Protozoa, Ciliophora) diversity: A probability-based approach using large sample collections from Africa, Australia and Antartica. Biodivers Conserv 6:1627–1638CrossRefGoogle Scholar
  61. Foissner W (1997b) Protozoa as bioindicators in agroecosystems, with emphasis on farming practices, biocides, and biodiversity. Agric Ecosyst Environ 62:93–103CrossRefGoogle Scholar
  62. Foissner W (1998) An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. Eur J Protistol 34:195–235Google Scholar
  63. Foissner W (1999) Protist diversity: estimates of the near-imponderable. Protist 150:363–368PubMedGoogle Scholar
  64. Foissner W, Korganova GA (1995) Redescription of 3 testate amebas (Protozoa, Rhizopoda) from a caucasian soil–centropyxis plagiostoma Bonnet and Thomas, cyclopyxis kahli (Deflandre) and cyclopyxis intermedia kufferath. Arch Protistenkd 146:13–28Google Scholar
  65. Foissner W, Korganova GA (2000) The Centropyxis aerophila complex (Protozoa: Testacea). Acta Protozool 39:257–273Google Scholar
  66. Foissner W, Schiller W (2001) Stable for 15 million years: scanning electron microscope investigation of Miocene euglyphid thecamoebians from Germany, with description of the new genus Scutiglypha. Eur J Protistol 37:167–180CrossRefGoogle Scholar
  67. Gehrels WR, Roe HM, Charman DJ (2001) Foraminifera, testate amoebae and diatoms as sea-level indicators in UK saltmarshes: a quantitative multiproxy approach. J Quatern Sci 16:201–220CrossRefGoogle Scholar
  68. Gilbert D, Amblard C, Bourdier G, Francez A-J (1998a) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microb Ecol 35:83–93PubMedCrossRefGoogle Scholar
  69. Gilbert D, Amblard C, Bourdier G, Francez A-J, Mitchell EAD (2000) Le régime alimentaire des thécamoebiens. Annee Biol 39:57–68Google Scholar
  70. Gilbert D, Amblard C, Bourdier G, Francez AJ (1998b) Short-term effect of nitrogen enrichment on the microbial communities of a peatland. Hydrobiologia 374:111–119CrossRefGoogle Scholar
  71. Grospietsch T (1958) Wechseltierchen (Rhizopoden) Kosmos Verlag, StuttgartGoogle Scholar
  72. Grospietsch T (1964) Monographische Studie der Gattung Hyalosphenia Stein. Hydrobiologia 26:211–241CrossRefGoogle Scholar
  73. Harnisch O (1925) Studien zur Ökologie und Tiergeographie der Moore. Zoologisch Jahrbuch (Abteilung Systematik) 51:1–166Google Scholar
  74. Harnisch O (1927) Einige Daten zur recenten und fossilen testaceen Rhizopodenfauna der Sphagnen. Arch Hydrobiol 18:345–360Google Scholar
  75. Harnisch O (1958) II. Klasse: Wurzelfüssler, Rhizopoda. In: Brohmer P, Ehrmann P, Ulmer G (eds) Die Tierwelt Mitteleuropas, Band 1: Urtiere-Hohltiere-Würmer, Lieferung 1b. Quelle & Meier, Leipzig, pp 1–75Google Scholar
  76. Hausmann K, Hülsmann N, Radek R (2003) Protistology, 3rd completely revised edition edn. E. Schweizerbart’sche Verlagsbuuchhandlung, Berlin, StuttgartGoogle Scholar
  77. Hayward BW, Holzmann M, Grenfell HR, Pawlowski J, Triggs CM (2004) Morphological distinction of molecular types in Ammonia–towards a taxonomic revision of the world’s most commonly misidentified foraminifera. Mar Micropaleontol 50:237–271CrossRefGoogle Scholar
  78. Heal OW (1961) The distribution of testate amoebae (Rhizopoda: Testacea) in some fens and mires in northern England. Zool J Linn Soc 44:369–382CrossRefGoogle Scholar
  79. Heal OW (1962) The abundance and microdistribution of testate amoebae (Protozoa: Rhizopoda) in Sphagnum. Oikos 13:35–47CrossRefGoogle Scholar
  80. Heal OW (1964) Observations on the seasonal and spatial distribution of testaceans (Protozoa: Rhizopoda) in Sphagnum. J Anim Ecol 33:395–412CrossRefGoogle Scholar
  81. Hendon D, Charman DJ (2004) High-resolution peatland water-table changes for the past 200 years: the influence of climate and implications for management. The Holocene 14:125–134CrossRefGoogle Scholar
  82. Hendon D, Charman DJ, Kent M (2001) Palaeohydrological records derived from testate amoebae analysis from peatlands in northern England: within-site variability, between-site comparability and palaeoclimatic implications. The Holocene 11:127–148CrossRefGoogle Scholar
  83. Jauhiainen S (2002) Testacean amoebae in different types of mire following drainage and subsequent restoration. Eur J Protistol 38:59–72CrossRefGoogle Scholar
  84. Jung W (1936) Thekamöben ursprünglischer lebender deutscher Hochmoore. Abhandlung Landesmuseum der Provinz Westfalen 7:1–87Google Scholar
  85. Kandeler E, Luftenegger G, Schwarz S (1992) Soil microbial processes and testacea (Protozoa) as indicators of heavy-metal pollution. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 155:319–322CrossRefGoogle Scholar
  86. Kumar A, Patterson RT (2000) Arcellaceans (thecamoebians): new tools for monitoring long- and short-term changes in lake bottom acidity. Environ Geol 39:689–697CrossRefGoogle Scholar
  87. Laggoun-Défarge F, Mitchell EAD, Gilbert D, Warner BG, Comont L, Disnar J-R, Buttler A (2004) Biochemical characteristics of peat organic matter and distribution of testate amoebae in two naturally regenerating cutover Sphagnum peatlands of the Jura mountains. In: Proceedings of the 12th International Peat Congress, Vol. 1, pp 383–384, Tampere, FinlandGoogle Scholar
  88. Lambert J, Chardez D (1978) Intérêt criminalistique de la microfaune terrestre. Revue Internationale de Police criminelle 319:158–170Google Scholar
  89. Lamentowicz M, Mitchell EAD (2005) The ecology of testate amoebae (Protists) in Sphagnum in north-west Poland in relation to peatland ecology. Microb Ecol 39:290–300Google Scholar
  90. Langdon PG, Barber KE, Hughes PDM (2003) A 7500-year peat-based palaeoclimatic reconstruction and evidence for an 1100-year cyclicity in bog surface wetness from Temple Hill Moss, Pentland Hills, southeast Scotland. Quatern Sci Rev 22:259–274CrossRefGoogle Scholar
  91. Lavoie M, Richard PJH (2000) The role of climate on the developmental history of Frontenac Peatland, southern Quebec. Can J Bot-Revue Canadienne de Botanique 78:668–684CrossRefGoogle Scholar
  92. Lee JJ, Leedale GF, Bradbury P (eds) (2000) An illustrated guide to the Protozoa, 2nd edn. Lawrence, Kansas, pp 1432Google Scholar
  93. Lloyd J (2000) Combined foraminiferal and thecamoebian environmental reconstruction from an isolation basin in NW Scotland: Implications for sea-level studies. J Foraminiferal Res 30:294–305CrossRefGoogle Scholar
  94. Loeblich AR, Tappan H (1964) Sarcodina. Chiefly “thecamoebians” and foraminiferida. In: Moore RC (ed) Treatise on invertebrate paleontology C(2), vol. 1. Geological Society of America and University of Kansas Press, Lawrence, Kansas, pp C2–C54Google Scholar
  95. Loranger G, Bandyopadhyaya I, Razaka B, Ponge JF (2001) Does soil acidity explain altitudinal sequences in collembolan communities? Soil Biol Biochem 33:381–393CrossRefGoogle Scholar
  96. Lussenhop J, Treonis A, Curtis PS, Teeri JA, Vogel CS (1998) Response of soil biota to elevated atmospheric CO2 in poplar model systems. Oecologia 113:247–251CrossRefGoogle Scholar
  97. Lüftenegger G, Petz W, Berger H, Foissner W, Adam H (1988) Morphologic and biometric characterization of 24 soil Testate Amebas (Protozoa, Rhizopoda). Arch Protistenkd 136:153–189Google Scholar
  98. Mauquoy D, Barber K (1999) Evidence for climatic deteriorations associated with the decline of Sphagnum imbricatum Hornsch ex Russ. in six ombrotrophic mires from northern England and the Scottish Borders. The Holocene 9:423–437CrossRefGoogle Scholar
  99. Mauquoy D, Barber K (2002) Testing the sensitivity of the palaeoclimatic signal from ombrotrophic peat bogs in northern England and the Scottish Borders. Rev Palaeobot Palynol 119:219–240CrossRefGoogle Scholar
  100. McCarthy FMG, Collins ES, McAndrews JH, Kerr HA, Scott DB, Medioli FS (1995) A comparison of postglacial Arcellacean (Thecamoebian) and pollen succession in Atlantic Canada, illustrating the potential of Arcellaceans for paleoclimatic reconstruction. J Paleontol 69:980–993Google Scholar
  101. McGlone MS, Wilmshurst JM (1999) A Holocene record of climate, vegetation change and peat bog development, east Otago, South Island, New Zealand. J Quatern Sci 14:239–254CrossRefGoogle Scholar
  102. McMullen JA, Barber KE, Johnson B (2004) A paleoecological perspective of vegetation succession on raised bog microforms. Ecol Monograp 74:45–77CrossRefGoogle Scholar
  103. Medioli FS, Scott DB, Collins ES, McCarthy FMG (1990) Fossil thecamoebians: present status and prospects for the future. In: Hemleben C, Kaminski MA, Kuhnt W, Scott DB (eds) Proceedings of the NATO advanced study institute on paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera, vol. 327, D. Reidel Publishing Company, Dordrecht-Boston, International, pp 813–839Google Scholar
  104. Meisterfeld R (1977) Die horizontale und vertikale Verteilung der Testaceen (Rhizopoda: Testacea) in Sphagnum. Arch Hydrobiolo 79:319–356Google Scholar
  105. Meisterfeld R (1978) Die Struktur von Testaceenzönosen (Rhizopoda, Testacea) in Sphagnum unter besonderer Berücksichtigung ihrer Diversität. Verhandlungen der Gesellschaft für Ökologie 7:441–450Google Scholar
  106. Meisterfeld R (1979) Cluster-Analysis of Associations of Testate Ameba (Rhizopoda, Testacea) in Sphagnum. Arch Protistenkd 121:270–307Google Scholar
  107. Meisterfeld R (2002a) Order Arcellinida Kent, 1880. In: Lee JJ, Leedale GF, Bradbury P (eds) The illustrated guide to the protozoa, vol. 2, Society of protozoologists, Lawrence, Kansas, USA, pp 827–860Google Scholar
  108. Meisterfeld R (2002b) Testate amoebae with filopodia. In: Lee JJ, Leedale GF, Bradbury P (eds) The illustrated guide to the protozoa, vol. 2. Society of protozoologists, Lawrence, Kansas, USA, pp 1054–1084Google Scholar
  109. Mignot JP, Raikov IB (1992) Evidence for meiosis in the Testate Ameba Arcella. J Protozool 39:287–289Google Scholar
  110. Mitchell EAD (2004) Response of testate amoebae (Protozoa) to N and P fertilization in an Arctic wet sedge tundra. Arct Antarct Alp Res 36:77–82CrossRefGoogle Scholar
  111. Mitchell EAD, Borcard D, Buttler AJ, Grosvernier P, Gilbert D, Gobat JM (2000a) Horizontal distribution patterns of testate amoebae (Protozoa) in a Sphagnum magellanicum carpet. Microb Ecol 39:290–300PubMedGoogle Scholar
  112. Mitchell EAD, Bragazza L, Gerdol R (2004) Testate Amoebae (Protista) Communities In Hylocomium splendens (Hedw.) B.S.G. (Bryophyta): relationships with altitude, and moss elemental chemistry. Protist 155:423–436PubMedCrossRefGoogle Scholar
  113. Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Albinsson C, Greenup AL, Heijmans MMPD, Hoosbeek MR, Saarinen T (2000b) Relationships among testate amoebae (Protozoa), vegetation and water chemistry in five Sphagnum-dominated peatlands in Europe. New Phytologist 145:95–106CrossRefGoogle Scholar
  114. Mitchell EAD, Buttler AJ, Warner BG, Gobat JM (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France. Ecoscience 6:565–576Google Scholar
  115. Mitchell EAD, Gilbert D (2004) Vertical micro-distribution and response to nitrogen deposition of Testate amoebae in Sphagnum. J Eukaryot Microbiol 51:485–495CrossRefGoogle Scholar
  116. Mitchell EAD, Gilbert D, Buttler A, Grosvernier P, Amblard C, Gobat J-M (2003) Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment. Microb Ecol 46:187–199PubMedCrossRefGoogle Scholar
  117. Mitchell EAD, Meisterfeld R (2005) Taxonomic confusion blurs the debate on cosmopolitanism versus local endemism of free-living protists. Protist 156:263–267PubMedCrossRefGoogle Scholar
  118. Mitchell EAD, van der Knaap WO, van Leeuwen JFN, Buttler A, Warner BG, Gobat JM (2001) The palaeoecological history of the Praz-Rodet bog (Swiss Jura) based on pollen, plant macrofossils and testate amoebae (Protozoa). The Holocene 11:65–80CrossRefGoogle Scholar
  119. Moraczewski J (1962) Differenciation ecologique de la faune des Testacés du littoral peu profond du lac Mamry. Pol Arch Hydrobiol 10:334–353Google Scholar
  120. Nguyen-Viet H, Bernard N, Mitchell EAD, Cortet J, Badot P-M, Gilbert D (2007) Relationship between testate amoebae and atmospheric heavy metals (Pb, Cd, Zn, Ni, Cu, Mn and Fe) accumulated in the moss Barbula indica Hanoi, Vietnam. Microb Ecol 53:53–65PubMedCrossRefGoogle Scholar
  121. Nguyen-Viet H, Gilbert D, Bernard N, Mitchell EAD, Badot P-M (2004) Relationship between atmospheric pollution characterized by NO2 concentrations and testate amoebae abundance and diversity. Acta Protozool 43:233–239Google Scholar
  122. Nikolaev SI, Mitchell EAD, Petrov NB, Berney C, Fahrni J, Pawlowski J (2005) The testate lobose amoebae (order Arcellinida Kent, 1880) finally find their home within Amoebozoa. Protist 156:191–202PubMedCrossRefGoogle Scholar
  123. Odum EP (1971) Fundamentals of ecology, 3rd edn. W. B. Saunders Co., PhiladelphiaGoogle Scholar
  124. Ogden CG (1983) Observations on the systematics of the genus Difflugia in Britain (Rhizopoda, Protozoa). Bull Nat Hist Mus Zool 44:1–73Google Scholar
  125. Ogden CG, Hedley RH (1980) An atlas to freshwater testate amoebae. Oxford University Press, OxfordGoogle Scholar
  126. Patterson DJ (1996) Free-living freshwater Protozoa: a colour guide. Manson Publishing Ltd., LondonGoogle Scholar
  127. Patterson RT, Dalby A, Kumar A, Henderson LA, Boudreau REA (2002) Arcellaceans (thecamoebians) as indicators of land-use change: Settlement history of the Swan Lake area, Ontario as a case study. J Paleolimnol 28:297–316CrossRefGoogle Scholar
  128. Patterson RT, Kumar A (2002) A review of current testate rhizopod (thecamoebian) research in Canada. Palaeogeograp Palaeoclimatol Palaeoecol 180:225–251CrossRefGoogle Scholar
  129. Penard E (1902) Les Rhizopodes du bassin du Léman Kündig, GenèveGoogle Scholar
  130. Porter SM, Knoll AH (2000) Testate amoebae in the Neoproterozoic Era: Evidence from vase- shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360–385CrossRefGoogle Scholar
  131. Primeau S (2004) Coastal freshwater wetland development in Mexico: A 4,500 -year record of succession from Laguna La Mancha, Vera Cruz. M.Sc. Thesis, University of WaterlooGoogle Scholar
  132. Quinn NP (2003) Testate amoebae (Protozoa) assemblages as environmental indicators of water tables and soil moisture in a kettle hole peatland in southern Ontario. M.Sc. Thesis, University of WaterlooGoogle Scholar
  133. Reinhardt EG, Dalby A, Kumar A, Patterson RT (2001) Utility of arcellacean morphotypic variants as pollution indicators in mine tailing contaminated lakes near Cobalt, Ontario, Canada. Micropaleontology 47:95–95Google Scholar
  134. Roe HM, Charman DJ, Gehrels WR (2002) Fossil testate amoebae in coastal deposits in the UK: implications for studies of sea-level change. J Quatern Sci 17:411–429CrossRefGoogle Scholar
  135. Ruzicka E (1982) Die subfossile Testaceen des Krottensees (Salzburg, Oesterreich). Limnologica (Berlin) 1:49–88Google Scholar
  136. Schmidt AR, von Eynatten H, Wagreich M (2001) The Mesozoic amber of Schliersee (southern Germany) is Cretaceous in age. Cretaceous Res 22:423–428CrossRefGoogle Scholar
  137. Schreve DC, Thomas GN (2001) Critical issues in European quaternary biostratigraphy. Quatern Sci Rev 20:1577–1582CrossRefGoogle Scholar
  138. Schönborn W (1962) Zur Ökologie der sphagnicolen, bryokolen un terrikolen Testaceen. Limnologica 1:231–254Google Scholar
  139. Schönborn W (1963) Die Stratigraphie lebender Testaceen im Sphagnetum der Hochmoore. Limnologica 1:315–321Google Scholar
  140. Schönborn W (1965a) Die Sedimentbewohnenden Testaceen einiger Masurischer Seen. Acta Protozool 3:297–309Google Scholar
  141. Schönborn W (1965b) Studien über die Gattung Difflugiella (Rhizopoda, Testacea). Limnologica 3:315–328Google Scholar
  142. Schönborn W (1966) Testaceen als Bioindikatoren im System der Seetypen Untersuchungen in Masurischen Seen und im Suwaki-Gebiet (Polen). Limnologica 4:1–11Google Scholar
  143. Schönborn W (1973) Paleolimnological studies of Testacea from Lake-Latnjajaure (Abisko-Region-Swedish-Lapland). Hydrobiologia 42:63–75Google Scholar
  144. Schönborn W (1992a) Adaptive polymorphism in soil-inhabiting testate amoebae (Rhizopoda): its importance for delimitation and evolution of asexual species. Arch Protistenkd 142:139–155Google Scholar
  145. Schönborn W (1992b) The role of protozoan communities in freshwater and soil ecosystems. Acta Protozool 31:11–18Google Scholar
  146. Schönborn W, Dorfelt H, Foissner W, Krienitz L, Schafer U (1999) A fossilized microcenosis in Triassic amber. J Eukary Microb 46:571–584CrossRefGoogle Scholar
  147. Schönborn W, Flossner D, Proft G (1965) Die Limnologische Characterisirung des Profundals einiger Seen mit Hilfe von Testaceen-Geimenschaften. Limnologica 3:371–380Google Scholar
  148. Schönborn W, Foissner W, Meisterfeld R (1983) Light and SEM studies of the shell morphology and formation of races in soil-living Testacea–Proposals of a biometrical characterization of Testacea shells. Protistologica 19:553–566Google Scholar
  149. Scott DB, Medioli FS (1983) Agglutinated rhizopods in Lake Erie: modern distribution and stratigraphic implications. J Paleontol 57:809–820Google Scholar
  150. Scott DB, Medioli FS, Schafer CT (2001) Monitoring in coastial environments using foraminifera and thecoamoebian indicators. Cambridge Unversity Press, CambridgeGoogle Scholar
  151. Smith HG (1992) Distribution and ecology of the testate rhizopod fauna of the continental Antarctic zone. Polar Biol 12:629–634Google Scholar
  152. Smith HG (1996) Diversity of Antarctic terrestrial protozoa. Biodivers Conserv 5:1379–1394CrossRefGoogle Scholar
  153. Todorov M (1998) Observation on the soil and moss testate amoebae (Protozoa: Rhizopoda) from Pirin Mountain (Bulgaria). Acta Zool Bulgarica 50:19–29Google Scholar
  154. Tolonen K (1986) Rhizopod analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. John Wiley and Sons, Chichester, pp 645–666Google Scholar
  155. Tolonen K, Warner BG, Vasander H (1992) Ecology of testaceans (Protozoa, Rhizopoda) in mires in Southern Finland.1. Autecology. Arch Protistenkd 142:119–138Google Scholar
  156. Tolonen K, Warner BG, Vasander H (1994) Ecology of Testaceans (Protozoa, Rhizopoda) in Mires in Southern Finland.2. Multivariate-Analysis.Arch Protistenkd 144:97–112Google Scholar
  157. Treonis AM, Lussenhop JF (1997) Rapid response of soil protozoa to elevated CO2. Biol Fertil Soils 25:60–62CrossRefGoogle Scholar
  158. Van Oye P (1944) Au sujet de la distribution géographique des Rhizopodes. Biologisch Jaarboek 11:83–91Google Scholar
  159. Vickery E, Charman DJ (2004) Biomonitoring of peatland restoration using testate amoebae. In: Verhoeven JTA, Dorland E, Coemans M (eds) 7th INTECOL international wetlands conference, vol. Book of abstracts, Utrecht, NL, 25–30 July 2004, pp 342Google Scholar
  160. Wanner M (1999) A review on the variability of testate amoebae: Methodological approaches, environmental influences and taxonomical implications. Acta Protozool 38:15–29Google Scholar
  161. Wanner M, Dunger W (2001) Biological activity of soils from reclaimed open-cast coal mining areas in Upper Lusatia using testate amoebae (protists) as indicators. Ecol Eng 17:323–330CrossRefGoogle Scholar
  162. Wanner M, Dunger W (2002) Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany. Eur J Soil Biol 38:137–143CrossRefGoogle Scholar
  163. Wanner M, Esser S, Meisterfeld R (1994) Effects of light, temperature, fertilizers and pesticides on growth of the common freshwater and soil species Cyclopyxis Kahli (Rhizopoda, Testacealobosia), interactions and adaptations. Limnologica 24:239–250Google Scholar
  164. Wanner M, Meisterfeld R (1994) Effects of some environmental factors on the shell morphology of testate amoebae (Rhizopoda, Protozoa). Eur J Protistol 30:191–195Google Scholar
  165. Warner BG (1987) Abundance and diversity of testate amoebae (Rhizopoda, Testacea) in Sphagnum peatlands in Southwestern Ontario, Canada. Arch Protistenkd 133:173–189Google Scholar
  166. Warner BG (1990) Testate Amoebae (Protozoa). In: Warner BG (ed) methods in Quaternary ecology, vol. Reprint Series 5. Geoscience Canada, St. John’s, Newfoundland, pp 65–74Google Scholar
  167. Warner BG, Asada T, Quinn NP (2007) Seasonal influences on the ecology of testate amoebae (Protozoa) in a small Sphagnum peatlands in southern Ontario, Canada. Microb Ecol 54:91–100PubMedCrossRefGoogle Scholar
  168. Warner BG, Charman DJ (1994) Holocene changes on a Peatland in Northwestern Ontario interpreted from Testate Amebas (Protozoa) analysis. Boreas 23:270–279CrossRefGoogle Scholar
  169. Warner BG, Chmielewski JG (1992) Testate amoebae (Protozoa) as indicators of drainage in a forested mire, northern Ontario, Canada. Arch Protistenkd 141:179–183Google Scholar
  170. Wilkinson DM (1994) A review of the biogeography of the protozoan genus Nebela in the southern temperate and Antarctic zones. Area 26:150–157Google Scholar
  171. Wilkinson DM (2001) What is the upper size limit for cosmopolitan distribution in free-living microorganisms? J Biogeograp 28:285–291CrossRefGoogle Scholar
  172. Wilmshurst JM, McGlone MS, Charman DJ (2002) Holocene vegetation and climate change in southern New Zealand: linkages between forest composition and quantitative surface moisture reconstructions from an ombrogenous bog. J Quatern Sci 17:653–666CrossRefGoogle Scholar
  173. Woodland WA, Charman DJ, Sims PC (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. The Holocene 8:261–273CrossRefGoogle Scholar
  174. Wylezich C, Meisterfeld R, Meisterfeld S, Schlegel M (2002) Phylogenetic analyses of small subunit ribosomal RNA coding regions reveal a monophyletic lineage of euglyphid testate amoebae (order Euglyphida). J Eukary Microbiol 49:108–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Edward A. D. Mitchell
    • 1
    • 2
  • Daniel J. Charman
    • 3
  • Barry G. Warner
    • 4
  1. 1.Swiss Federal Research Institute WSL, Wetlands Research GroupLausanneSwitzerland
  2. 2.EPFL, Laboratoire des Systèmes Écologiques (ECOS)LausanneSwitzerland
  3. 3.School of GeographyUniversity of PlymouthPlymouthUK
  4. 4.Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada

Personalised recommendations