Biodiversity and Conservation

, Volume 16, Issue 11, pp 3095–3109 | Cite as

The importance of water-level fluctuation for the conservation of shallow water benthic macroinvertebrates: an example in the Andean zone of Chile

  • Claudio Valdovinos
  • Carolina Moya
  • Viviana Olmos
  • Oscar Parra
  • Bernhard Karrasch
  • Olaf Buettner
Original Paper

Abstract

Many researchers have shown the importance of water chemistry and benthic habitat characteristics for the conservation of the freshwater macroinvertebrate biodiversity. However, few authors have examined the physical effect of extreme water-level fluctuations in lakes. The present study set out to determine, through a comparative study between a regulated lake (Laja Lake, LL) and an unregulated lake (Icalma Lake, IL) of the Andean zone of southern Chile, how man-made disturbances of the natural hydrological regime affect the structure of the benthic macroinvertebrate community. The results showed LL had very low values for species richness, density and biomass in comparison with IL, and the community was composed mainly of few individuals belonging to opportunistic taxa such as Chironomidae and Naididae. We suggest that the low values in the regulated lake are potentially explained by littoral zone factors driven by the water-level fluctuations such as: desiccation, freezing of the biota, removal of organic particles from the sediment and absence of aquatic macrophytes.

Keywords

Benthic macroinvertebrates Water-level fluctuations Lake ecosystem Chile 

References

  1. Allan JD, Flecker AS (1993) Biodiversity conservation in running waters. BioScience 43:32–43CrossRefGoogle Scholar
  2. Batzer DP, Wissinger SA (1996) Ecology of insect communities on nontidal wetlands. Annu Rev Entomol 41:75–100CrossRefPubMedGoogle Scholar
  3. Bendell BE, McNicol DK (1987) Fish predation, lake acidity and the composition of aquatic insect assemblages. Hydrobiologia 150:193–202CrossRefGoogle Scholar
  4. Bendell BE, McNicol DK (1995) Lake acidity, fish predation and the distribution and abundance of some littoral insects. Hydrobiologia 302:133–145CrossRefGoogle Scholar
  5. Brodersen KP, Dall PC, Lindegaard C (1998) The invertebrate fauna in the upper stony littoral of Danish lakes: macroinvertebrates as trophic indicators. Freshw Biol 39:577–592CrossRefGoogle Scholar
  6. Bruguière JG (1789) Encyclopédie méthodique ou par ordre de mateières. Histoire naturelle des Vers, des Mollusques, ParisGoogle Scholar
  7. Bryan SD, Hill TD, Lynott ST, Duffy WG (1995) The influence of changing water levels and temperatures on the food habits of walleye in Lake Oahe, South Dakota. J Freshwat Ecol 10:1–10Google Scholar
  8. Buchanan JB (1984) Sediment analysis. In: McIntyre AD (ed) Methods for the study of marine benthos. Blackwell, Oxford, pp 41–65Google Scholar
  9. CNE. (2006). Fijación de precios de nudo abril de 2006 sistema interconectado central (SIC). Technical report Comisión Nacional de Energía, Santiago de ChileGoogle Scholar
  10. Colwell RK 1997. EstimateS: Statistical estimation of species richness and shared species from samples. Version 5. User’s Guide and application. Available via DIALOG. http://viceroy.eeb.uconn.edu/estimates. Cited 27 Jul 2006Google Scholar
  11. Connell JH (1978) Diversity in tropical rain forest and coral reefs. Science 199:1302–1310CrossRefPubMedGoogle Scholar
  12. Connor EF, McCoy ED (1979) The statistics and biology of the species area relationship. Am Nat 113:791–833CrossRefGoogle Scholar
  13. D'Orbigny AD (1846) Voyage dans l'Amerique méridionale. 5, part. 3, Mollusques, ParisGoogle Scholar
  14. Eadie JM, Keast A (1984) Resource heterogeneity and fish species diversity in lakes. Can J Zool 62:1689–1695CrossRefGoogle Scholar
  15. Fraser JC (1972) Water levels, fluctuation, and minimum pools in reservoirs for fish and other aquatic resources: an annotated bibiliography. FAO Fish Tech Pap 113:1–42Google Scholar
  16. Friday LE (1987) The diversity of macroinvertebrate and macrophyte communities in ponds. Freshw Biol 18:87–104CrossRefGoogle Scholar
  17. Gaboury MN, Patalas JW (1984). Influence of water level drawdown on the fish populations of Cross Lake, Manitoba. Can J Fish Aquat Sci 41:118–125Google Scholar
  18. Galat DL, Lipkin R (2000) Restoring the ecological integrity of great rivers: historical hydrographs aid in defining reference conditions for the Missouri River. Hydrobiologia 422/423:29–48CrossRefGoogle Scholar
  19. Gotelli N, Graves G (1996) Null models in ecology. Washington, Smithsonian Institution PressGoogle Scholar
  20. Gray JE (1828) Spicilegia zoologica; or original figures and short systematic descriptions of new and unfigured animals, LondonGoogle Scholar
  21. Hildrew AG, Townsend CR (1987) Organization in freshwater benthic communities. In: Gee JHR, Giller PS (eds) Organization of communities past and present. Blackwell, Oxford pp 347–371Google Scholar
  22. Hill JL, Curran PJ, Foody GM (1994) The effect of sampling on the species-area curve. Global Ecol Biogeogr Lett 4:97–106CrossRefGoogle Scholar
  23. Hill NM, Keddy PA, Wisheu IC (1998) A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Can J Bot 73:598–607Google Scholar
  24. Hynes HB (1961) The effect of water-level fluctuations on littoral fauna. Verhandlungen Internationale Vereinigung Limnologie 14:652–656Google Scholar
  25. Jeffries M (1989) Measuring Talling’s ‘element of chance’ in pond populations. Freshw Biol 21:383–393Google Scholar
  26. Keddy PA, Reznicek AA (1986) Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. J Great Lakes Res 12:25–36Google Scholar
  27. Lieffers VJ, Shay JM (1981) The effects of water level on the growth and reproduction of Scirpus maritimus var. paludosus. Can J Bot 59:118–121Google Scholar
  28. MacArthur RJ, Wilson WO (1967) The Theory of island biogeography. Princeton University Press, New JerseyGoogle Scholar
  29. Mardones M, Ugarte E, Rondanelli M, Rodríguez A and Barrientos C 1993. Planificación ecológica en el sector Icalma y Galletué (IX Región): Proposición de un método, v. 6. Concepción, Monografías Científicas EULA, Centro EULA-Chile, Universidad de ConcepciónGoogle Scholar
  30. Mardones M, Vargas J (2005) Efectos hidrológicos de los usos eléctrico y agrícola en la cuenca del río Laja (Chile centro-sur). Revista de Geografía Norte Grande 33:89–102Google Scholar
  31. Marklund H, Sandsten H, Hansson LS, Blindow I (2002) Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshw Biol 47:2049–2059CrossRefGoogle Scholar
  32. Muñoz S, Mendoza G, Valdovinos C (1999) Evaluación rápida de la biodiversidad de macroinvertebrados bentónicos en cinco lagos costeros de la VIII Región (Chile). Gayana (Zool) 62:86–91Google Scholar
  33. Nardini A, Blanco H, Senior C (1997) Why didn’t EIA work in the chilean project canal Laja-Diguillín? Environ Impact Assess Rev 17:53–63CrossRefGoogle Scholar
  34. Palomäki R (1994) Response by macrozoobenthos biomass to water level regulation in some Finnish lake littoral zones. Hydrobiologia 286:17–26CrossRefGoogle Scholar
  35. Parra O, Vighi M, Valdovinos C, Urrutia R, Chuecas L, Campos H, Vismara R et al. (1993). Evaluación de la calidad del agua y ecología del sistema linético y fluvial del río Biobío: Monografías Científicas EULA, v. 12. Concepción, Centro EULA-Chile, Universidad de ConcepciónGoogle Scholar
  36. Richter BD, Mathews R, Harrison DL, Wigington R (2003) Ecologically sustainable water management: managing river flows for ecological integrity. Ecol Appl 13:206–224CrossRefGoogle Scholar
  37. Robinson CLK, Tonn WM (1989) Influence of environmental factors and piscivory in structuring fish assemblages of small Alberta lakes. Can J Fish Aquat Sci 46:81–89CrossRefGoogle Scholar
  38. Rodríguez MA, Lewis WM (1997) Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecol Monogr 67:109–128Google Scholar
  39. Scarsbrook MR, Townsend CR (1993) Stream community structure in relation to spatial and temporal variation: a habitat template stud of two contrasting New Zealand streams. Freshw Biol 29:395–410CrossRefGoogle Scholar
  40. Scasso F, Campos H (2000) Pelagic fish communities and eutrophication in lakes of an andean basin of central Chile. J Freshw Ecol 15:71–82Google Scholar
  41. Tadeusz P, Miroslawa P, Bijok P (1999) Diversity of invertebrate fauna in littoral of shallow Myczkowce dam reservoir in comparison with a deep Solina dam reservoir. Hydrobiologia 408:203–210CrossRefGoogle Scholar
  42. Tonn WM, Magnuson JJ (1982) Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63:1149–1166CrossRefGoogle Scholar
  43. Townsend CR, Scarsbrooke MR, Doledec S (1997) The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnol Oceanogr 42:938–941CrossRefGoogle Scholar
  44. Valdovinos C (2006) Invertebrados dulceacuícolas, In: CONAMA (ed) Biodiversidad de Chile – patrimonio y desafíos. Santiago de Chile, Ocho Libros, pp 204–225Google Scholar
  45. Vargas J, Alarcón B (2001) Aportes al balance hídrico de la cuenca del Laja XV Congreso Chileno de Ingeniería Hidráulica 1:125–132Google Scholar
  46. Varrelman SK, Spencer CN (1991) Preliminary investigation of effects of water-level regulation on nearshore benthic invertebrates of Flathead Lake compared to Lake McDonald, northwest Montana. Proc Montana Acad Sci 51:85–102Google Scholar
  47. Ward JV (1992) Aquatic insect ecology. John Wiley & Sons, New YorkGoogle Scholar
  48. Ward JV (1998) Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biol Conserv 83:269–278CrossRefGoogle Scholar
  49. Wellborn GA, Skelly DK, Werner EW (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363CrossRefGoogle Scholar
  50. Wilcox DA (1993) Effects of water-level regulation on wetlands of the Great Lakes. Great Lakes Wetlands 4:1–2Google Scholar
  51. Wilcox DA, Meeker JE (1991) Disturbance effects on aquatic vegetation in regulated and unregulated lakes in northern Minnesota. Can J Bot 69:1542–1551CrossRefGoogle Scholar
  52. Wilcox DA, Meeker JE (1992) Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota. Wetlands 12:192–203CrossRefGoogle Scholar
  53. Zar JH (1999). Biostatistical analysis. Prentice Hall, Upper Saddle River, NJGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Claudio Valdovinos
    • 1
    • 2
  • Carolina Moya
    • 1
  • Viviana Olmos
    • 1
  • Oscar Parra
    • 1
    • 2
  • Bernhard Karrasch
    • 3
  • Olaf Buettner
    • 3
  1. 1.University of Concepcion, EULA Center for Environmental ResearchConcepcionChile
  2. 2.Patagonian Ecosystems Research Center (CIEP)CoyhaiqueChile
  3. 3.Department of Inland Water Research MagdeburgUFZ-Centre for Environmental Research Leipzig-HalleMagdeburgGermany

Personalised recommendations