Biodiversity and Conservation

, Volume 16, Issue 10, pp 2847–2865 | Cite as

AFLPs and morphological diversity of Phaseolus lunatus L. in Cuban home gardens: approaches to recovering the lost ex situ collection

  • Leonor Castiñeiras
  • Félix Alberto Guzmán
  • Myriam Cristina Duque
  • Tomás Shagarodsky
  • Raúl Cristóbal
  • M. Carmen de VicenteEmail author
Original Paper


The genetic diversity of 76 accessions of lima bean (Phaseolus lunatus L.), collected mostly from home gardens, was assessed with AFLPs and seed descriptors to evaluate the potential for recovering a lost ex situ collection in Cuba. The sample contained 60 accessions collected from 25 home gardens in the three main geographical regions of Cuba and represented the three cultivated types found on the island. Four more accessions were part of the former ex situ collection and the remaining 12 accessions were selected from the world bean collection held at the International Center for Tropical Agriculture. Some morphological measurements discriminated among cultivated types. The analysis of 62 polymorphic bands obtained with two AFLP primer combinations indicated that the three cultivated bean types were comparable in terms of molecular diversity and that no pattern of variation was associated with geographical distribution. However, a multiple correspondence analysis with the same molecular data detected different genetic groups. Three of these groups included all the cultivated accessions collected from home gardens, but could not be explained by the seed descriptors. The results therefore suggest that a scientifically sound collecting strategy to recover the former Cuban ex situ gene bank should consider combining geographical, morphological, and molecular data. The findings also suggest that any proposed methodologies should be considered before developing a conservation strategy based on an ex situ or combined ex situ and in situ approaches.


Genetic structure In situ conservation Lima bean Molecular diversity Multiple correspondence analysis Phaseolus lunatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was a spin-off from the global project on genetic resources in home gardens carried out by the International Plant Genetic Resources Institute (IPGRI) and entitled Contribution of Home Gardens to the in situ Conservation of Plant Genetic Resources in Farming Systems, which was partially funded by the German Federal Ministry for Economic Cooperation and Development (BMZ) through GTZ (Deutsche Gesellschaft für Technische Zusammenarbeit). The authors also wish to express their appreciation to Maritza García and Fidel Hernández (Estación Ecológica ‘Sierra del Rosario’) and to Celerina Giraudy (Unión de Servicios Ambientales de Guantánamo), members of the Cuban component of the global Project’s research team for their help in collecting samples and morphological characterization; to Joe Tohme (CIAT) for allowing use of laboratory facilities at the CIAT Biotechnology Unit; to Luigi Guarino, Xavier Scheldeman, José Luis Chávez, and V. Ramanatha Rao for their comments that helped improve the manuscript.


  1. Allard RW (1967) Principios de la mejora genética de las plantas. Edición Revolucionaria, La Habana, CubaGoogle Scholar
  2. Capo-chichi LJA, Weaver DB, Morton CM (2001) AFLP assessment of genetic variability among velvetbean (Mucuna sp.) accessions. Theor Appl Genet 103:1180–1188CrossRefGoogle Scholar
  3. Castiñeiras L, Esquivel M, Rivero N, Mariño A (1991) Variabilidad en semillas de P. lunatus L. colectadas en Cuba. Revista del Jardín Botánico Nacional 12:109–114Google Scholar
  4. Castiñeiras L, Shagarodsky T, Fuentes V, Fundora Z, Fernández L, Moreno V, Barrios O, Sánchez P, Walón L, Pérez MF, Puldón G (2001) El frijol caballero (Phaseolus lunatus L.) un cultivo marginal y en peligro de erosión genética en Cuba. Revista del Jardín Botánico Nacional 22(1):133–138Google Scholar
  5. Castiñeiras L, Fundora-Mayor Z, Shagarodsky T, Moreno V, Barrios O, Fernández L, Cristóbal R (2002) Contribution of home gardens to in situ conservation of plant genetic resources—Cuban component. In: Watson JW, Eyzaguirre PB (eds) Proceedings of the second international home gardens workshop: contribution of home gardens to in situ conservation of plant genetic resources in farming systems. Witzenhausen, Federal Republic of Germany, 17–19 July 2001, IPGRI, Rome Italy, pp 42–56Google Scholar
  6. de Vicente MC (2002) Molecular techniques to facilitate prioritization of plant genetic resources conservation and further research. AgBiotechNet 4(ABN092):1–5Google Scholar
  7. Esquivel M, Castiñeiras L, Lioi L, Hammer K (1990) Origin, classification, variation and distribution of lima bean (P. lunatus L.) in the light of Cuban materials. Euphytica 49:89–97CrossRefGoogle Scholar
  8. Fundora Z, Shagarodsky T, Castiñeiras L (2004) Sampling methods for genetic diversity study in home gardens in Cuba. In: Eyzaguirre P, Linares O (eds) Home gardens and agrobiodiversiy. Smithsonian Books, Washington, pp 56–57Google Scholar
  9. Guzmán FA, Ayala H, Azurdia C, Duque MC, de Vicente MC (2005) AFLP assessment of genetic diversity of Capsicum genetic resources in Guatemala: home gardens as an option for conservation. Crop Sci 45:363–370CrossRefGoogle Scholar
  10. Hongtrakul V, Gordan MH, Knapp SJ (1997) Amplified fragment length polymorphism as a tool for DNA ingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theor Appl Genet 95:400–407CrossRefGoogle Scholar
  11. Hoogendijk M, Williams DE (2002) Characterizing the genetic diversity of home gardens crops: some examples from the Americas. In: Watson JW, Eyzaguirre PB (eds), Proceedings of the second international home gardens workshop: contribution of home gardens to in situ conservation of plant genetic resources in farming systems. Witzenhausen, Federal Republic of Germany, 17–19 July 2001, IPGRI, Rome, Italy, pp. 34–40Google Scholar
  12. IBPGR (1982) Descriptors of Phaseolus lunatus. International Board for Plant Genetic Resources, Rome, ItalyGoogle Scholar
  13. Kim MS, Moore PH, Zee F, Fitch MMM, Steiger DL, Manshardt RM, Paull RE, Drew RA, Sekioka T, Ming R (2002) Genetic diversity of Carica papaya as revealed by AFLP markers. Genome 45(3):503–512CrossRefPubMedGoogle Scholar
  14. Lioi L, Esquivel M, Castiñeiras L, Hammer K (1991) Lima bean (Phaseolus lunatus L.) landraces from Cuba: electrophoresis analysis of seed storage proteins. Biol Zent bl 110:76–79Google Scholar
  15. Maughan PJ, Saghai Maroof MA, Buss GR, Huestis GM (1996) Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance and near-isogenic lines. Theor Appl Genet 93:392–401CrossRefGoogle Scholar
  16. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325CrossRefPubMedGoogle Scholar
  17. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, USAGoogle Scholar
  18. Shagarodsky T, Castiñeiras L, Fuentes V, Cristóbal R (2004) Characterization in situ of the variability of sapote or mamey in Cuban home gardens. In: Eyzaguirre P, Linares O (eds) Home gardens and agrobiodiversity. Smithsonian Books, Washington, pp 266–281Google Scholar
  19. Tohme J, Gonzalez DO, Beebe S, Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384CrossRefGoogle Scholar
  20. Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131(3):733–740PubMedGoogle Scholar
  21. Vargas EM, Castro E, Macaya G, Rocha OJ (2003) Variación del tamaño de frutos y semillas en 38 poblaciones silvestres de Phaseolus lunatus (Fabaceae) del Valle Central de Costa Rica. Revista de Biología Tropical 51(3):707–724PubMedGoogle Scholar
  22. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  23. Watson JW, Eyzaguirre PB (eds) (2002) Proceedings of the second international home gardens workshop: contribution of home gardens to in situ conservation of plant genetic resources in farming systems, 17–19 July 2001, Witzenhausen, Federal Republic of Germany. International Plant Genetic Resources Institute, RomeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Leonor Castiñeiras
    • 1
  • Félix Alberto Guzmán
    • 2
  • Myriam Cristina Duque
    • 3
  • Tomás Shagarodsky
    • 1
  • Raúl Cristóbal
    • 1
  • M. Carmen de Vicente
    • 2
    Email author
  1. 1.Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT)Santiago de las Vegas, Ciudad de la HabanaCuba
  2. 2.Regional Office for the Americas International Plant Genetic Resources Institute (IPGRI)c/o CIATCaliColombia
  3. 3.Centro Internacional de Agricultura Tropical (CIAT)CaliColombia

Personalised recommendations