Skip to main content

Advertisement

Log in

Allozyme electrophoresis still represents a powerful technique in the management of coral reefs

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Understanding genetic variability and gene flow between populations of scleractinian corals separated by one to several hundred kilometers is crucially important as we head into a century of climate change in which an understanding of the connectivity of populations is a critically important question in management. Genetic methods that directly use molecular variance in the DNA should offer greater precision in detecting differences among individuals and populations than the more traditional allozyme electrophoresis. However, this paper highlights the point that the limited number of DNA markers that have been identified for scleractinian coral genetic studies do not necessarily offer greater precision than that offered by allozymes. In fact, at present allozyme electrophoresis yields greater information than the eight different DNA markers used in this study. Given the relative ease of use of allozymes and the wealth of comparable data sets from numerous previously published studies, allozyme electrophoresis should not be dismissed for population structure and connectivity studies on coral reefs. While continued effort should be placed into searching for new DNA markers, until a more sensitive DNA marker becomes available for scleractinian corals, allozyme electrophoresis remains a powerful and relevant technique for understanding the connectivity of coral population studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise J.C. 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York.

    Google Scholar 

  • Ayre D.J. and Dufty S.L. 1994. Restrictive gene flow in the viviparous coral Seriatopora hystrix on Australia’s Great Barrier Reef. Evolution 48: 1183–1201.

    Google Scholar 

  • Ayre D.J. and Hughes T.P. 2000. Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54: 1590–1605.

    CAS  PubMed  Google Scholar 

  • Ayre D.J. and Resing J.M. 1986. Sexual and asexual production of planulae in reef corals. Marine Biology 90: 187–190.

    Google Scholar 

  • Ayre D.J. and Willis B.L. 1988. Population structure in the coral Pavona cactus: clonal genotypes show little phenotypic plasticity. Marine Biology 99: 495–505.

    Google Scholar 

  • Ayre D.J., Hughes T.P. and Standish R.J. 1997. Genetic differentiation, reproductive mode, and gene flow in the brooding coral Pocillopora damicornis along the Great Barrier Reef, Australia. Marine Ecology Progress Series 159: 175–187.

    Google Scholar 

  • Babcock R.C. and Heyward A.J. 1986. Larval development of certain gamete spawning scleractinian corals. Coral Reefs 5: 111–116.

    Article  Google Scholar 

  • Babcock R.C., Bull G.D., Harrison P.L., Heyward A.J., Oliver J.K., Wallace C.C. and Willis B.L. 1986. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Marine Biology 90: 379–394.

    Google Scholar 

  • Bensasson D., Zhang D.X., Hartl D.L. and Hewitt D.H. 2001. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology and Evolution 16: 314–321.

    Google Scholar 

  • Benzie J.A.H., Haskell A. and Lehman H. 1995. Variation in the genetic composition of coral (Pocillopora damicornis and Acropora palifera) populations from different reef habitats. Marine Biology 121: 731–739.

    Google Scholar 

  • Bohonak A.J. 1999. Dispersal, gene flow and population structure. Quarterly Review of Biology 74: 21–45.

    Google Scholar 

  • Brown B.E. 1997. Coral bleaching: causes and consequences. Coral Reefs 16: 129–138.

    Google Scholar 

  • Caetano-Anollés G., Bassam B.J. and Gresshoff P.M. 1991. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology 9: 553–557.

    Google Scholar 

  • Diekmann O.E., Bak R.P.M., Stam W.T. and Olsen J.L. 2001. Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Marine Biology 139: 221–233.

    Google Scholar 

  • Féral J.-P. 2002. How useful are the genetic markers in attempts to understand and manage marine biodiversity? Journal of Experimental Marine Biology and Ecology 268: 121–145.

    Google Scholar 

  • Folmer O., Black M., Hoeh W., Lutz R. and Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    Google Scholar 

  • Forbes A.T., Demetriades N.T., Benzie J.A.H. and Ballment E. 1999. Allozyme frequencies indicate little geographic variation among stocks of giant tiger prawn Penaeus monodon in the south-west Indian Ocean. South African Journal of Marine Science 21: 271–277.

    Google Scholar 

  • Glynn P.W. 1991. Coral reef bleaching in the 1980s and possible connections with global warming. Trends in Ecology and Evolution 6: 175–179.

    Google Scholar 

  • Goreau T.J. 1990. Coral bleaching in Jamaica. Nature 343: 417–419.

    Article  PubMed  Google Scholar 

  • Goreau T.J., McClanahan T., Hayes R. and Strong A. 2000. Conservation of coral reefs after the 1998 global bleaching event. Conservation Biology 14: 5–15.

    Google Scholar 

  • Harris H. and Hopkinson D.A. 1976. Handbook of Electrophoresis in Human Genetics. North-Holland, Amsterdam, The Netherlands.

    Google Scholar 

  • Harrison P.L. and Wallace C.C. 1990. Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z. (ed) Ecosystems of the World 25: Coral Reefs. Elsevier, New York, pp. 133–207.

    Google Scholar 

  • Hellberg M.E. 1994. Relationship between inferred levels of gene flow and geographic distance in a philopatric coral Balanophyllia elegans. Evolution 48: 1829–1854.

    Google Scholar 

  • Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research 50: 839–866.

    Google Scholar 

  • Hoegh-Guldberg O. 2003. The future of coral reefs: integrating climate model projections and the recent behaviour of corals and their dinoflagellates. Proceedings of the Ninth International Coral Reef Society Symposium, Bali, Indonesia 2: 1105–1110.

    Google Scholar 

  • Hughes T.P. and Tanner J.E. 2000. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81: 2250–2263.

    Google Scholar 

  • Hunter C.L., Morden C.W. and Smith C.M. 1997. The utility of ITS sequences in assessing relationships among zooxanthellae and corals. Proceedings of the Eighth International Coral Reef Society Symposium, Panama 2: 1599–1602.

    Google Scholar 

  • IPCC-WG1 2001. Summary for policymakers. A report of Working Group I of the Intergovernmental Panel on Climate Change, pp. 1–20.

  • Jones G.P., Milicich M.J., Emslie M.J. and Lunow C. 1999. Self-recruitment in a coral reef fish population. Nature 402: 802–804.

    Article  CAS  Google Scholar 

  • Kruger A. and Schleyer M.H. 1998. Sexual reproduction in the coral Pocillopora verrucosa (Cnidaria: Scleractinia) in KwaZulu-Natal, South Africa. Marine Biology 132: 703–710.

    Google Scholar 

  • Lopez J.V. and Knowlton N. 1997. Discrimination of species in the Montastrea annularis complex using multiple genetic loci. Proceedings of the Eighth International Coral Reef Society Symposium, Panama 2: 1613–1618.

    Google Scholar 

  • Lopez J.V., Kersanach R., Rehner S.A. and Knowlton N. 1999. Molecular determination of species boundaries in corals: genetic analysis of the Montastrea annularis complex using amplified fragment length polymorphisms and a microsatellite marker. Biological Bulletin 196: 80–93.

    Google Scholar 

  • Medina M., Weil E. and Szmant A.M. 1999. Examination of the Montastrea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Marine Biotechnology 1: 89–97.

    Google Scholar 

  • Miller M.P. 1997. Tools for population genetic analyses (TFPGA) 1.3: aWindows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by the author.

  • Miller K. and Mundy C. 2003. Rapid settlement in broadcast spawning corals: implications for larval dispersal. Coral Reefs 22: 99–106.

    Google Scholar 

  • Mumby P.J., Chisholm J.R.M., Edwards A.J., Clark C.D., Roark E.B., Andrefouet S. and Jaubert J. 2001. Unprecedented bleaching-induced mortality in Porites spp. at Rangiroa Atoll, French Polynesia. Marine Biology 139: 183–189.

    Google Scholar 

  • Pandolfi J.M. 2002. Coral community dynamics at multiple scales. Coral Reefs 21: 13–23.

    Google Scholar 

  • Paran I. and Michelmore R.W. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics 85: 985–993.

    Google Scholar 

  • Parker P.G., Snow A.A., Schug M.D., Booton G.C. and Fuerst P.A. 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79: 361–382.

    Google Scholar 

  • Quijada A., Liston A., Robinson W. and Alvarez-Buyalla E. 1997. The ribosomal ITS region as a marker to detect hybridisation in pines. Molecular Ecology 6: 995–996.

    Google Scholar 

  • Ramsay P.J. 1994. Marine geology of the Sodwana Bay shelf, southeast Africa. Marine Geology 120: 225–247.

    Google Scholar 

  • Richardson B.J., Baverstock P.R. and Adams M. 1986. Allozyme Electrophoresis: A Handbook for Animal Systematics and Population Studies. Academic Press, Sydney, Australia.

    Google Scholar 

  • Ridgway T. 2002. Testing the applicability of molecular genetic markers to population analyses of scleractinian corals. Symbiosis 33: 243–261.

    Google Scholar 

  • Ridgway T. and Hoegh-Guldberg O. 2003. Reef recovery in disturbed coral reef ecosystems. Proceedings of the ninth International Coral Reef Symposium 2: 1117–1122.

    Google Scholar 

  • Ridgway T., Hoegh-Guldberg O. and Ayre D.J. 2001. Panmixia in Pocillopora verrucosa from South Africa. Marine Biology 139: 175–181.

    Google Scholar 

  • Riegl B., Schleyer M.H., Cook P.J. and Branch G.M. 1995. Structure of Africa’s southernmost coral communities. Bulletin of Marine Science 56: 676–691.

    Google Scholar 

  • Rodriguez-Lanetty M. and Hoegh-Guldberg O. 2002. The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Molecular Ecology 11: 1177–1189.

    Google Scholar 

  • Romano S.L. and Palumbi S.R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science 271: 640–642.

    CAS  Google Scholar 

  • Sier C.J.S. and Olive P.J.W. 1994. Reproduction and reproductive variability in the coral Pocillopora verrucosa from the republic of Maldives. Marine Biology 118: 713–722.

    Google Scholar 

  • Stobbart B. and Benzie J.A.H. 1994. Allozyme electrophoresis demonstrates that the scleractinan coral Montipora digitata is two species. Marine Biology 118: 183–190.

    Google Scholar 

  • Stoddart J.A. 1984. Genetic differentiation amongst populations of the coral Pocillopora damicornis off southwestern Australia. Coral Reefs 3: 149–156.

    Google Scholar 

  • Sunnucks P., Wilson A.C.C., Beheregaray L.B., Zenger K., French J. and Taylor A.C. 2000. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Molecular Ecology 9: 1699–1710.

    Google Scholar 

  • Takabayashi M. 2000. Intraspecific genetic variability in scleractinian corals. Ph.D. Thesis, University of Queensland, Brisbane, Australia.

    Google Scholar 

  • Takabayashi M., Carter D.A., Lopez J.V. and Hoegh-Guldberg O. 2003. Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs 22: 17–22.

    Google Scholar 

  • Thompson J.D., Higgins D.G. and Gibson T.J. 1994. ‘CLUSTALW’: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Google Scholar 

  • van Oppen M.J.H., Willis B.L. and Miller D.J. 1999. Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proceedings of the Royal Society of London Ser. B 266: 179–183.

    Google Scholar 

  • van Oppen M.J.H., McDonald B.J., Willis B.L. and Miller D.J. 2001. The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting or morphological convergence? Molecular Biology and Evolution 18: 1315–1329.

    Google Scholar 

  • van Oppen M.J.H., Wörheide G. and Takabayashi M. 2003. Nuclear markers in evolutionary and population genetic studies of scleractinian corals and sponges. Proceedings of the Ninth International Coral Reef Society Symposium, Bali, Indonesia 1: 131–138.

    Google Scholar 

  • van Woesik R. 2002. Processes regulating coral communities. Comments on Theoretical Biology 7: 201–214.

    Google Scholar 

  • Veron J.E.N. 2000. Corals of the World. Australian Institute of Marine Science, Townsville, Australia.

    Google Scholar 

  • Weir B.S. and Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 41: 1358–1370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ridgway, T. Allozyme electrophoresis still represents a powerful technique in the management of coral reefs. Biodivers Conserv 14, 135–149 (2005). https://doi.org/10.1007/s10531-005-4054-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-005-4054-4

Key words

Navigation