Skip to main content
Log in

Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Extending the collection of garlic (Allium sativum L.) accessions is an important means that is available for broadening the genetic variability of this cultivated plant, with regard to yield, quality, and tolerance to biotic and abiotic traits; it is also an important means for restoring fertility and flowering. In the framework of the EU project ‘Garlic and Health’, 120 garlic accessions were collected in Central Asia – the main centre of garlic diversity. Plants were documented and thereafter maintained in field collections in both Israel and The Netherlands. The collection was evaluated for biological and economic traits. Garlic clones vary in most vegetative characteristics (leaf number, bulb size and structure), as well as in floral scape elongation and inflorescence development. A clear distinction was made between incomplete bolting and bolting populations; most of the accessions in the latter populations produced flowers with fertile pollen and receptive stigma. Wide variations were recorded with regard to differentiation of topsets, their size, number and rapidity of development. Furthermore, significant variation in organo-sulphur compounds (alliin, isoalliin, allicin and related dipeptides) was found within garlic collections and between plants grown under differing environmental conditions. Genetic fingerprinting by means of AFLP markers revealed three distinct groups within this collection, differing also in flowering ability and organo-S content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnault I., Christides J.P., Mandon N., Haffner T., Kahane R. and Auger J. 2003. Ion-pair HPLC method for simultaneous analysis of alliin, deoxyalliin, allicin and dipeptide precursors in garlic products using MSn and UV. Journal of Chromatography A 991: 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Astley D., Innes N.L. and Van der Meer Q.P. 1982. Genetic resources of Allium species — a global report. International Board of Plant Genetic Resources, Rome, Italy, 81/77, 38 pp.

    Google Scholar 

  • Burba J.L. 1993. Produccion de ‘Semilla’ de Ajo. Asociación Cooperadora EEA, La Consulta, Argentina.

    Google Scholar 

  • Dafni A. and Maues M.M. 1998. A rapid and simple procedure to determine stigma receptivity. Sexual Plant Reproduction 11: 177–180.

    Article  Google Scholar 

  • Etoh T. 1986. Fertility of the garlic clones collected in Soviet Central Asia. Journal of the Japanese Society of Horticultural Science 55: 312–319.

    Article  Google Scholar 

  • Etoh T. and Simon P.W. 2002. Diversity, fertility and seed production of garlic. In: Rabinowitch H.D. and Currah L. (eds) Allium Crop Science — Recent Advances. CABI Publishing, Wallingford, UK, pp. 101–117.

    Google Scholar 

  • Etoh T., Noma Y., Nishitarumizu Y. and Wakamoto T. 1988. Seed productivity and germinability of various garlic clones collected in Soviet Central Asia. Memoirs of the Faculty of Agriculture of Kagoshima University 24: 129–139.

    Google Scholar 

  • FAO 2001. FAOSTAT: FAO Statistical Database. Food and Agriculture Organization, New York. http://apps.fao.or/default.htm.

    Google Scholar 

  • Fritsch R.M. and Friesen N. 2002. Evolution, domestication, and taxonomy. In: Rabinowitch H.D. and Currah L. (eds) Allium Crop Science — Recent Advances. CABI Publishing, Wallingford, UK, pp. 5–30.

    Google Scholar 

  • Hong C.-J. 1999. Fundamental studies on crossbreeding in garlic, Allium sativum L. Ph.D. Thesis, Kagoshima University, Kagoshima, Japan.

    Google Scholar 

  • Hong C.-J. and Etoh T. 1996. Fertile clones of garlic (Allium sativum L.) abundant around the Tien Shan mountains. Breeding Science 46: 349–353.

    Google Scholar 

  • Hong C.-J., Watanabe H., Etoh T. and Iwai S. 2000. A search of pollen fertile clones in the Iberian garlic by RAPD markers. Memoirs of the Faculty of Agriculture of Kagoshima University 36: 11–16.

    Google Scholar 

  • Inaba A., Ujiie T. and Etoh T. 1995. Seed productivity and germinability of garlic. Breeding Science 45: 310 (in Japanese).

    Google Scholar 

  • Jenderek M.M. 1998. Generative reproduction of garlic (Allium sativum). Sesja Naukowa 57: 141–145 (in Polish).

    Google Scholar 

  • Kamenetsky R. and Rabinowitch H.D. 2001. Floral development in bolting garlic. Sexual Plant Reproduction 13: 235–241.

    Article  Google Scholar 

  • Kamenetsky R., London Shafir I., Baizerman M., Khassanov F., Kik C. and Rabinowitch H.D. 2003. Garlic (Allium sativum L.) and its wild relatives from Central Asia: evaluation for fertility potential. Proceedings of the XXVIth International Horticultural Congress, Toronto, Canada. Acta Horticulturae 637: 83–91.

    Google Scholar 

  • Kamenetsky R., London Shafir I., Zemah H., Barzilay M. and Rabinowitch H.D. 2004. Environmental control of garlic growth and florogenesis. Journal of the American Society for Horticultural Science 129(2): 144–151.

    Google Scholar 

  • Keusgen M. 2002. Health and Alliums. In: Rabinowitch H.D. and Currah L. (eds) Allium Crop Science — Recent Advances. CABI Publishing, Wallingford, UK, pp. 357–378.

    Google Scholar 

  • Kik C., Kahane R. and Gebhardt R. 2001. Garlic and Health. Nutrition Metabolism and Cardiovascular Diseases. Vol. 11(Suppl. to No. 4): 57–65.

    CAS  Google Scholar 

  • Koch H.P. and Lawson L.D. 1996. Garlic, the Science and Therapeutic Application of Allium sativum L. and Related Species. 2nd edn. Williams & Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Kondo T., Hasegawa H. and Suzuki M. 2000. Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Reports 19: 989–993.

    Article  CAS  Google Scholar 

  • Kononkov P.F. 1953. The question of obtaining garlic seed. Sad i Ogorod 8: 38–40 (in Russian).

    Google Scholar 

  • Konvicka O. 1984. Generative Reproduktion von Knoblauch (Allium sativum). Allium Newsletter 1: 28–37 (in German).

    Google Scholar 

  • Kotlinska T., Havranek P., Navratill M., Gerasimova L., Pimakhov A. and Neikov S. 1991. Collecting onion, garlic and wild species of Allium in Central Asia, USSR. FAO/IBPGR Plant Genetic Resources Newsletter 83/84: 31–32.

    Google Scholar 

  • Kubec R., Svobodovà M. and Velìsek J. 1999. Gas chromatographic determination of S-alk(en)ylcysteine sulphoxides. Journal of Chromatography A 862: 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Lallemand J., Messian C.M., Briand F. and Etoh T. 1997. Delimitation of varietal groups in garlic (Allium sativum L.) by morphological, physiological and biochemical characters. In: Burba J.L. and Galmarini C.R. (eds) Proceedings of the First International Symposium on Edible Alliaceae, Mendoza, Argentina. Acta Horticulturae 433: 123–132.

  • Lancaster J.E. and Boland M.J. 1990. Flavor biochemistry. In: Rabinowitch H.D. and Brewster J.L. (eds) Onions and Allied Crops. Vol. III. CRC Press, Boca Raton, Florida, pp. 33–72.

    Google Scholar 

  • Maaß H.I. and Klaas M. 1995. Infraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theoretical and Applied Genetics 91: 89–97.

    Article  Google Scholar 

  • Mochizuki E., Nakayama A., Kitado Y., Saito K., Nakazawa H., Suzuki S. and Fujita M. 1989. Liquid chromatographic determination of alliin in garlic and garlic products. Journal of Chromatography A 455: 271–277.

    Article  Google Scholar 

  • Novak F.J. 1990. Allium tissue culture. In: Rabinowitch H.D. and Brewster J.L. (eds) Onions and Allied Crops. Vol. I. CRC Press, Boca Raton, Florida, pp. 233–250.

    Google Scholar 

  • Novak F.J. and Havranek P. 1975. Attempts to overcome the sterility of common garlic (Allium sativum). Biologia Plantarum (Praha) 17: 376–379.

    Article  CAS  Google Scholar 

  • Peters J. (ed) 2000. Tetrazolium Testing Handbook 2000. Association of Official Seed Analysts (AOSA), Contribution No. 29.

  • Pooler M.R. and Simon P.W. 1993a. Characterization and classification of isozyme and morphological variation in a diverse collection of garlic clones. Euphytica 68: 21–130.

    Article  Google Scholar 

  • Pooler M.R. and Simon P.W. 1993b. Garlic flowering in response to clone, photoperiod, growth temperature and cold storage. HortScience 28: 1085–1086.

    Google Scholar 

  • Pooler M.R. and Simon P.W. 1994. True seed production in garlic. Sexual Plant Reproduction 7: 282–286.

    Article  Google Scholar 

  • Randle W.M. and Lancaster J.E. 2002. Sulphur compounds in Alliums. In: Rabinowitch H.D. and Currah L. (eds) Allium Crop Science: Recent Advances. CAB International, Wallingford, UK, pp. 329–356.

    Google Scholar 

  • van Heusden A.W., van Ooijen J.W., Vrielink R., Verbeek W.H.J., Wietsma W.A. and Kik C. 2000. Genetic mapping in an interspecific cross in Allium with amplified fragment length polymorphism (AFLP™) markers. Theoretical and Applied Genetics 100: 118–126.

    Article  CAS  Google Scholar 

  • Wold S., Esbesen K. and Geladi P. 1987. Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2: 37–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kamenetsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamenetsky, R., London Shafir, I., Khassanov, F. et al. Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia. Biodivers Conserv 14, 281–295 (2005). https://doi.org/10.1007/s10531-004-5050-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-004-5050-9

Navigation