Skip to main content

Advertisement

Log in

Incorporating functional connectivity into species distribution models improves the prediction of invasiveness of an exotic species not at niche equilibrium

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Biological invasion assessments have often used species distribution models (SDMs) assuming species equilibrium with the environment. However, the identification of invaded areas seems more accurate when incorporating movement constraints as landscape connectivity (e.g., circuit theory models). We studied an introduced population of an Asian bird species (Leiothrix lutea) in Portugal during its spreading stage between 2014 and 2019 to: (1) compare accuracy in inferring year-based invasion stages between resistance surfaces models (from SDMs) and circuit theory models; (2) quantify the consistency of niche conservatism; and (3) map a long-term connectivity pattern (2014–2050) to predict future invaded areas. We considered three environmental variables: two static (distance to rivers and altitude) and a dynamic (normalized difference vegetation index: NDVI). SDMs were projected during the species dispersal period to infer range expansion, and then converted into resistance surfaces. We compared SDM performances with those of circuit theory models, built with resistance surfaces plus reachable habitat patches as nodes. Overall, our results showed the superiority of circuit theory models over SDMs in inferring invasion. Along the years, SDMs showed that the relative importance of river proximity decreased while NDVI increased, with landscape metrics suggesting an increasing niche generalism. We examined niche conservatism across years by comparing continuous distribution to binary maps (habitat patches) through landscape metrics. We found no evidence for niche conservatism after accounting for landscape variation. Our findings highlight the importance of following each invasion stage of an established exotic species, as well as incorporating niche breadth and dispersal constraints into frameworks to enhance population monitoring and control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The authors will made observation data available on request.

Code availability

Not applicable.

References

  • Allen CR, Angeler DG, Moulton MP, Holling CS (2015) The importance of scaling for detecting community patterns: success and failure in assemblages of introduced species. Divers 7:229–241

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Amano HE, Eguchi K (2002) Foraging niches of introduced Red-billed Leiothrix and native species in Japan. Ornithol Sci 1:123–131

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Method Ecol Evol 3:327–338

    Article  Google Scholar 

  • Basly J (2007) Le Léiothrix jaune Leiothrix lutea en Béarn: répartition, effectifs et comportement. Ornithos 14:370–375

    Google Scholar 

  • Bishop-Taylor R, Tulbure MG, Broich M (2018) Evaluating static and dynamic landscape connectivity modelling using a 25-year remote sensing time series. Landsc Ecol 33:625–640

    Article  Google Scholar 

  • Bøhn T, Amundsen PA (2001) The competitive edge of an invading specialist. Ecology 82:2150–2163

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    Article  CAS  PubMed  Google Scholar 

  • Broughton RK, Ramellini S, Maziarz M, Pereira PF (2022) The Red-billed Leiothrix (Leiothrix lutea): a new invasive species for Britain? Ibis. https://doi.org/10.1111/ibi.13090

    Article  Google Scholar 

  • Camacho-Cervantes M, Garcia CM, Ojanguren AF, Magurran AE (2014) Exotic invaders gain foraging benefits by shoaling with native fish. R Soc Open Sci 1:140101

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman D, Pescott OL, Roy HE, Tanner R (2019) Improving species distribution models for invasive non-native species with biologically informed pseudo-absence selection. J Biogeogr 46:1029–1040

    Article  Google Scholar 

  • Chapple DG, Simmonds SM, Wong BB (2012) Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol Evol 27:57–64

    Article  PubMed  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Conlisk E, Haeuser E, Flint A, Lewison RL, Jennings MK (2021) Pairing functional connectivity with population dynamics to prioritize corridors for Southern California spotted owls. Divers Distrib 27:844–856

    Article  Google Scholar 

  • Coops NC, Wulder MA (2019) Breaking the Habit(at). Trends Ecol Evol 34:585–587

    Article  PubMed  Google Scholar 

  • Copernicus Land Monitoring Service (2019a) European Environment Agency (EEA). https://land.copernicus.eu/. Accessed 20 Oct 2019a

  • Copernicus Land Monitoring Service (2019b) European Environment Agency (EEA). https://land.copernicus.eu/. Accessed 20 Nov 2019b

  • Cowley DJ, Johnson O, Pocock MJ (2015) Using electric network theory to model the spread of oak processionary moth, Thaumetopoea processionea, in urban woodland patches. Landsc Ecol 30:905–918

    Article  Google Scholar 

  • Dickson BG, Albano CM, Anantharaman R et al (2019) Circuit-theory applications to connectivity science and conservation. Conserv Biol 33:239–249

    Article  PubMed  Google Scholar 

  • Diniz MF, Cushman SA, Machado RB, Júnior PDM (2019) Landscape connectivity modeling from the perspective of animal dispersal. Landsc Ecol 35:41–58

    Article  Google Scholar 

  • Drown DM, Levri EP, Dybdahl MF (2011) Invasive genotypes are opportunistic specialists not general purpose genotypes. Evol Appl 4:132–143

    Article  PubMed  Google Scholar 

  • Early R, Bradley BA, Dukes JS et al (2016) Global threats from invasive alien species in the twenty-first century and national response capacities. Nat Commun 7:1–9

    Article  Google Scholar 

  • Engler JO, Stiels D, Schidelko K, Strubbe D, Quillfeldt P, Brambilla M (2017) Avian SDMs: current state, challenges, and opportunities. J Avian Biol 48:1483–1504

    Article  Google Scholar 

  • Etten JVR (2017) package gdistance: distances and routes on geographical grids. R Package Version 1.3–1. https://cran.r-project.org/package=gdistance. Accessed 10 Jan 2020

  • Evangelista PH, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, Norman JB III, Barnett DT (2008) Modelling invasion for a habitat generalist and a specialist plant species. Divers Distrib 14:808–817

    Article  Google Scholar 

  • Falaschi M, Mangiacotti M, Sacchi R, Scali S, Razzetti E (2018) Electric circuit theory applied to alien invasions: a connectivity model predicting the Balkan frog expansion in Northern Italy. Acta Herpetol 13:33–42

    Google Scholar 

  • Farina A, Pieretti N, Morganti N (2013) Acoustic patterns of an invasive species: the Red-billed Leiothrix (Leiothrix lutea Scopoli 1786) in a Mediterranean shrubland. Bioacoustics 22:175–194

    Article  Google Scholar 

  • Fernández-Manso A, Quintano C, Roberts DA (2020) Can Landsat-derived variables related to energy balance improve understanding of burn severity from current operational techniques? Remote Sens 12:890

    Article  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Frazier AE, Wang L (2011) Characterizing spatial patterns of invasive species using sub-pixel classifications. Remote Sens Environ 115:1997–2007

    Article  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  • Fu B, Burgher I (2015) Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J Arid Environ 113:59–68

    Article  Google Scholar 

  • Furquet-Morales C (2022) Leiótrix piquirrojo Leiothrix lutea. Molina B, Nebreda A, Muñoz AR, Seoane J, Real R, Bustamante J y del Moral JC: III Atlas de las aves en época de reproducción en España. SEO/BirdLife. Madrid. https://atlasaves.seo.org/ave/leiotrix-piquirrojo/

  • Gábor L, Moudrý V, Lecours V, Malavasi M, Barták V, Fogl M, Šímová P, Rocchini D, Václavík T (2020) The effect of positional error on fine scale species distribution models increases for specialist species. Ecography 43:256–269

    Article  Google Scholar 

  • Gallien L, Douzet R, Pratte S, Zimmermann NE, Thuiller W (2012) Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136

    Article  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Gu H, Chen J, Ewing H, Liu X, Zhao J, Goodale E (2017) Heterospecific attraction to the vocalizations of birds in mass-fruiting trees. Behav Ecol Sociobiol 71:82

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  CAS  PubMed  Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading

    Book  Google Scholar 

  • Harary F, Norman RZ (1953) Graph theory as a mathematical model in social science. University of Michigan, Institute for Social Research, Ann Arbor

    Google Scholar 

  • Hernández-Brito D, Carrete M, Popa-Lisseanu AG, Ibáñez C, Tella JL (2014) Crowding in the city: losing and winning competitors of an invasive bird. PLoS ONE 9:e100593

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrando S, Llimona F, Brotons L, Quesada J (2010) A new exotic bird in Europe: recent spread and potential range of Red-billed Leiothrix Leiothrix lutea in Catalonia (northeast Iberian Peninsula). Bird Study 57:226–235

    Article  Google Scholar 

  • Herrando-Moraira S, Nualart N, Herrando-Moraira A, Chung MY, Chung MG, López-Pujol J (2019) Climatic niche characteristics of native and invasive Lilium lancifolium. Sci Rep 9:1–16

    Article  CAS  Google Scholar 

  • Hijmans RJ, Van Etten J, Cheng J et al (2015) raster: geographic data analysis and modeling. R Package Version 3.0. 2015. https://cran.r-project.org/web/packages/raster/. Accessed 15 Nov 2019

  • Hui C, Roura-Pascual N, Brotons L, Robinson RA, Evans KL (2012) Flexible dispersal strategies in native and non-native ranges: environmental quality and the ‘good–stay, bad–disperse’rule. Ecography 35:1024–1032

    Article  Google Scholar 

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Kováč D, Ač A, Šigut L, Peñuelas J, Grace J, Urban O (2022) Combining NDVI, PRI and the quantum yield of solar-induced fluorescence improves estimations of carbon fluxes in deciduous and evergreen forests. Sci Total Environ 829:154681

    Article  PubMed  Google Scholar 

  • Le Louarn M, Clergeau P, Strubbe D, Deschamps-Cottin M (2018) Dynamic species distribution models reveal spatiotemporal habitat shifts in native range-expanding versus non-native invasive birds in an urban area. J Avian Biol 49:jav-01527

    Article  Google Scholar 

  • Leonard PB, Duffy EB, Baldwin RF, McRae BH, Shah VB, Mohapatra TK (2017) gflow: software for modelling circuit theory-based connectivity at any scale. Method Ecol Evol 8:519–526

    Article  Google Scholar 

  • Liang D, Yang S, Pagani-Núñez E, He C, Liu Y, Goodale E, Liao WB, Hu J (2020) How to become a generalist species? Individual niche variation across habitat transformation gradients. Front Ecol Evol 8:597450

    Article  Google Scholar 

  • Liebl AL, Martin LB (2012) Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird. Proc R Soc B 279:4375–4381

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang D, Li H, Li W, Wang Q (2017) Ecological land fragmentation evaluation and dynamic change of a typical black soil farming area in northeast China. Sustainability 9:300

    Article  Google Scholar 

  • Liu C, Wolter C, Xian W, Jeschke JM (2020) Species distribution models have limited spatial transferability for invasive species. Ecol Lett 23:1682–1692

    Article  PubMed  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33:103–114

    Article  Google Scholar 

  • Lockwood JL, Moulton MP (1994) Ecomorphological pattern in Bermuda birds: the influence of competition and implications for nature preserves. Evol Ecol 8:53–60

    Article  Google Scholar 

  • Lovell RS, Blackburn TM, Dyer EE, Pigot A (2021) Environmental resistance predicts the spread of alien species. Nat Ecol Evol 5:322–329

    Article  PubMed  Google Scholar 

  • MacDonald SE, Ward MP, Sperry JH (2019) Manipulating social information to promote frugivory by birds on a Hawaiian Island. Ecol Appl 29:e01963

    Article  CAS  PubMed  Google Scholar 

  • Male TD, Fancy SG, Ralph CJ (1998) Red-billed leiothrix (Leiothrix lutea). The Birds of North America 359

  • McGarigal K, Marks BJ (1995) Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1–122

  • McGarigal K (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure (Vol. 351). US Department of Agriculture, Forest Service, Pacific Northwest Research Station

  • McGarigal K (2014) Landscape pattern metrics. Wiley StatsRef: Statistics Reference Online

  • McGeoch MA, Latombe G (2016) Characterizing common and range expanding species. J Biogeogr 43:217–228

    Article  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    Article  PubMed  Google Scholar 

  • Milanesi P, Della Rocca F, Robinson RA (2020) Integrating dynamic environmental predictors and species occurrences: toward true dynamic species distribution models. Ecol Evol 10:1087–1092

    Article  PubMed  Google Scholar 

  • Muñoz AR, Real R (2006) Assessing the potential range expansion of the exotic monk parakeet in Spain. Divers Distrib 12:656–665

    Article  Google Scholar 

  • Muratet A, Lorrilliere R, Clergeau P, Fontaine C (2013) Evaluation of landscape connectivity at community level using satellite-derived NDVI. Landsc Ecol 28:95–105

    Article  Google Scholar 

  • Nagelkerke LA, van Onselen E, van Kessel N, Leuven RS (2018) Functional feeding traits as predictors of invasive success of alien freshwater fish species using a food-fish model. PLoS ONE 13:e0197636

    Article  PubMed  PubMed Central  Google Scholar 

  • Naimi B (2017) Package ‘usdm’. Uncertainty Analysis for Species Distribution Models. R Package Version 1.1–18. https://cran.r-project.org/package=usdm. Accessed 10 Feb 2020

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Pereira PF, Godinho C, Vila-Viçosa MJ, Mota PG, Lourenço R (2017) Competitive advantages of the red-billed leiothrix (Leiothrix lutea) invading a passerine community in Europe. Biol Invasions 19:1421–1430

    Article  Google Scholar 

  • Pereira PF, Lourenço R, Mota PG (2018) Behavioural dominance of the invasive red-billed leiothrix (Leiothrix lutea) over European native passerine-birds in a feeding context. Behaviour 155:55–67

    Article  Google Scholar 

  • Pereira PF, Barbosa AM, Godinho C, Salgueiro PA, Silva RR, Lourenço R (2020a) The spread of the red-billed leiothrix (Leiothrix lutea) in Europe: the conquest by an overlooked invader? Biol Invasions 22:709–722

    Article  Google Scholar 

  • Pereira PF, Lourenço R, Mota PG (2020b) Two songbird species show subordinate responses to simulated territorial intrusions of an exotic competitor. Acta Ethol 23:143–154

    Article  Google Scholar 

  • Pereira PF, Godinho C, Lopes C, Lourenço R (2022) Seed dispersal by an invasive exotic bird in Europe. Ardea 110:1–8

    Article  Google Scholar 

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jędrzejewska B, Lima M, Kausrud K (2011) The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Clim Res 46:15–27

    Article  Google Scholar 

  • Piper WH (2011) Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 65:1329–1351

    Article  Google Scholar 

  • Pyle RL, Pyle P (2017) The Birds of the Hawaiian Islands: occurrence, history, distribution, and status. B.P. Bishop Museum, Honolulu

    Google Scholar 

  • Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM (2020) Scientists’ warning on invasive alien species. Biol Rev 95:1511–1534. https://doi.org/10.1111/brv.12627

    Article  PubMed  Google Scholar 

  • R Development Core Team (2019) R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Development Core Team R: Vienna, Austria. http://www.R-project.org. Accessed 11 Nov 2019

  • Ramellini S, Simoncini A, Ficetola GF, Falaschi M (2020) Modelling the potential spread of the Red-billed Leiothrix Leiothrix lutea in Italy. Bird Study 66:550–560

    Article  Google Scholar 

  • Rasmussen PC, Anderton JC (2012) Birds of South Asia: The Ripley Guide. Smithsonian Institution, Washington DC, USA, and Lynx Edicions, Barcelona

  • Redding DW, Pigot AL, Dyer EE, Şekercioğlu ÇH, Kark S, Blackburn TM (2019) Location-level processes drive the establishment of alien bird populations worldwide. Nature 571:103–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351

  • Salgueiro PA, Valerio FS, Mira C, Rabaça A, JE, Santos SM, (2021) Multispecies landscape functional connectivity enhances local bird species’ diversity in a highly fragmented landscape. J Environ Manag 284:112066

    Article  Google Scholar 

  • Santini L, Benítez-López A, Maiorano L, Čengić M, Huijbregts MA (2021) Assessing the reliability of species distribution projections in climate change research. Divers Distrib 27:1035–1050

    Article  Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139

    Article  Google Scholar 

  • Seki SI, Fujiki D, Sato S (2014) Assessing changes in bird communities along gradients of undergrowth deterioration in deer-browsed hardwood forests of western Japan. For Ecol Manag 320:6–12

    Article  Google Scholar 

  • Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA (2017) Evolution of ecological niche breadth. Annu Rev Ecol Evol Syst 48:183–206

    Article  Google Scholar 

  • Srivastava V, Lafond V, Griess VC (2019) Species distribution models (SDM): applications, benefits and challenges in invasive species management. CAB Rev 14(10):1079

    Google Scholar 

  • Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics a biometrical approach, 3rd edn. McGraw-Hill Book Co., New York

    Google Scholar 

  • Strubbe D, Broennimann O, Chiron F, Matthysen E (2013) Niche conservatism in non-native birds in Europe: niche unfilling rather than niche expansion. Glob Ecol Biogeogr 22:962–970

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R, Georges MD, Thuiller CW (2019) Package ‘biomod2’, https://mran.revolutionanalytics.com/web/packages/biomod2/biomod2.pdf

  • Tischendorf L (2001) Can landscape indices predict ecological processes consistently? Landsc Ecol 16:235–254

    Article  Google Scholar 

  • Tischendorf L, Fahrig L (2000) How should we measure landscape connectivity? Landsc Ecol 15(7):633–641

    Article  Google Scholar 

  • Ueta M (2020) Avifauna at Ooyamazawa: Decline of Birds that Forage in Bushy Understories. In: Sakio H (ed) Long-term ecosystem changes in riparian forests. Ecological research monographs. Springer, Singapore. https://doi.org/10.1007/978-981-15-3009-8_11

    Chapter  Google Scholar 

  • Uva JS (2019) 6º Inventário Florestal Nacional: 2015 Relatório Final. ICNF, Lisboa

  • Václavík T, Meentemeyer RK (2009) Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecol Model 220:3248–3258

    Article  Google Scholar 

  • Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Valerio F, Basile M, Balestrieri R, Posillico M, Di Donato S, Altea T, Matteucci G (2016) The reliability of a composite biodiversity indicator in predicting bird species richness at different spatial scales. Ecol Indic 71:627–635

    Article  Google Scholar 

  • Valerio F, Ferreira E, Godinho S, Pita R, Mira A, Fernandes N, Santos SM (2020) Predicting microhabitat suitability for an endangered small mammal using sentinel-2 data. Remote Sens 12:562

    Article  Google Scholar 

  • Vall-llosera M, Llimona F, de Cáceres M, Sales S, Sol D (2016) Competition, niche opportunities and the successful invasion of natural habitats. Biol Invasions 18:3535–3546

    Article  Google Scholar 

  • Vargha A, Delaney HD (1998) The Kruskal-Wallis test and stochastic homogeneity. J Educ Behav Stat 23:170–192

    Article  Google Scholar 

  • Venables WN, Ripley BD (2013) Modern applied statistics with S-PLUS. Springer, New York

    Google Scholar 

  • Vogt P, Riitters K (2017) GuidosToolbox: universal digital image object analysis. Eur J Remote Sens 50(1):352–361 https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/

  • Wu Y, Colwell RK, Han N et al (2014) Understanding historical and current patterns of species richness of babblers along a 5000-m subtropical elevational gradient. Glob Ecol Biogeogr 23:1167–1176

    Article  Google Scholar 

  • Young NE, Jarnevich CS, Sofaer HR, Pearse I, Sullivan J, Engelstad P, Stohlgren TJ (2020) A modeling workflow that balances automation and human intervention to inform invasive plant management decisions at multiple spatial scales. PLoS ONE 15:e0229253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797

    Article  Google Scholar 

  • Zhang Q, Han R, Zou F (2011) Effects of artificial afforestation and successional stage on a lowland forest bird community in southern China. For Ecol Manag 261:1738–1749

    Article  Google Scholar 

  • Zhang Q, Han R, Huang Z, Zou F (2013) Linking vegetation structure and bird organization: response of mixed-species bird flocks to forest succession in subtropical China. Biodivers Conserv 22:1965–1989

    Article  Google Scholar 

  • Zhang Z, Hou D, Xun Y, Zuo X, Yang D, Zhang Z (2016) Nest-site microhabitat association of red-billed leiothrix in subtropical fragmented forest in central China: evidence for a reverse edge effect on nest predation risk? J Nat Hist 50:1483–1501

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ana Diniz Sampaio for fieldwork support.

Funding

PFP and FV were supported by doctoral Grants (SFRH/BD/87340/2012; SFRH/BD/122854/2016, respectively) from Fundação para a Ciência e a Tecnologia (Portugal POPH/QREN).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection was performed by PFP and RL. Data analysis was performed by FV. All authors wrote and approved the final manuscript.

Corresponding author

Correspondence to Pedro Filipe Pereira.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

All the authors have read the manuscript and agreed to its submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 43985 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, P.F., Valerio, F. & Lourenço, R. Incorporating functional connectivity into species distribution models improves the prediction of invasiveness of an exotic species not at niche equilibrium. Biol Invasions 25, 3517–3533 (2023). https://doi.org/10.1007/s10530-023-03121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-023-03121-4

Keywords

Navigation