Arca M, Capdevielle-Dulac C, Villemant C, Mougel F, Arnold G, Silvain J-F (2012) Development of microsatellite markers for the yellow-legged Asian hornet, Vespa velutina, a major threat for European bees. Conserv Genet Resour 4:283–286
Article
Google Scholar
Arca M et al (2015) Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol Invasions 17:2357–2371
Article
Google Scholar
Barbet-Massin M, Rome Q, Muller F, Perrard A, Villemant C, Jiguet F (2013) Climate change increases the risk of invasion by the Yellow-legged hornet. Biol Conserv 157:4–10. https://doi.org/10.1016/j.biocon.2012.09.015
Article
Google Scholar
Barbet-Massin M, Rome Q, Villemant C, Courchamp F (2018) Can species distribution models really predict the expansion of invasive species? PLoS One 13:e0193085. https://doi.org/10.1371/journal.pone.0193085
CAS
Article
PubMed
PubMed Central
Google Scholar
Barbet-Massin M, Salles JM, Courchamp F (2020) The economic cost of control of the invasive yellow-legged Asian hornet. NeoBiota 55:11–25. https://doi.org/10.3897/neobiota.55.38550
Article
Google Scholar
Beggs JR, Brockerhoff EG, Corley JC, Kenis M, Masciocchi M, Muller F, Rome Q, Villemant C (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526
Article
Google Scholar
Bertolino S, Lioy S, Laurino D, Manino A, Porporato M (2016) Spread of the invasive yellow-legged hornet Vespa velutina (Hymenoptera: Vespidae) in Italy. Appl Entomol Zool 51:589–597. https://doi.org/10.1007/s13355-016-0435-2
Article
Google Scholar
Bessa AS, Carvalho J, Gomes A, Santarém F (2016) Climate and land-use drivers of invasion: predicting the expansion of Vespa velutina nigrithorax into the Iberian Peninsula. Insect Conserv Divers 9:27–37. https://doi.org/10.1111/icad.12140
Article
Google Scholar
Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11. https://doi.org/10.1007/s00442-005-0070-z
Article
PubMed
Google Scholar
Budge GE et al (2017) The invasion, provenance and diversity of Vespa velutina Lepeletier (Hymenoptera: Vespidae) in Great Britain. PLoS One 12:e0185172. https://doi.org/10.1371/journal.pone.0185172
CAS
Article
PubMed
PubMed Central
Google Scholar
Carvalho J, Hipólito D, Santarém F, Martins R, Gomes A, Carmo P, Rodrigues R, Grosso-Silva J, Fonseca C (2020) Patterns of Vespa velutina invasion in Portugal using crowdsourced data. Insect Conserv Divers 13:501–507. https://doi.org/10.1111/icad.12418
Article
Google Scholar
Daly D, Archer ME, Watts PC, Speed MP, Hughes MR, Barker FS, Jones J, Odgaard K, Kemp SJ (2002) Polymorphic microsatellite loci for eusocial wasps (Hymenoptera: Vespidae). Mol Ecol Notes 2:273–275. https://doi.org/10.1046/j.1471-8286.2002.00220.x-i2
CAS
Article
Google Scholar
Darrouzet E, Gévar J, Guignard Q, Aron S (2015) Production of early diploid males by European colonies of the invasive hornet Vespa velutina nigrithorax. PLoS One 10:e0136680. https://doi.org/10.1371/journal.pone.0136680
CAS
Article
PubMed
PubMed Central
Google Scholar
Demichelis S, Manino A, Minuto G, Mariotti M, Porporato M (2014) Social wasp trapping in north west Italy: Comparison of different bait-traps and first detection of Vespa velutina. Bull Insectology 67: 307–317. ISSN 1721-8861
Ding G, Xu H, Oldroyd B, Gloag R (2017) Extreme polyandry aids the establishment of invasive populations of a social insect. Heredity 119:381–387. https://doi.org/10.1038/hdy.2017.49
CAS
Article
PubMed
PubMed Central
Google Scholar
Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. https://doi.org/10.1111/j.1365-294X.2007.03538.x
CAS
Article
PubMed
Google Scholar
Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375. https://doi.org/10.1007/s10530-004-8122-6
Article
Google Scholar
El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree argania spinosa skeels endemic to Morocco. Theoret Appl Genetics 92:832–839. https://doi.org/10.1007/BF00221895
Article
Google Scholar
Elder R, Bell K (1998) Establishment of Chilocorus spp. (Coleoptera: Coccinellidae) in a Carica papaya L. orchard infested by Aonidiella orientalis (Newstead) (Hemiptera: Diaspididae). Aust J Entomol 37:362–365. https://doi.org/10.1111/j.1440-6055.1998.tb01597.x
Article
Google Scholar
Eloff J, Veldtman R, Bulgarella M, Lester P (2020) Population genetics of the invasive wasp Vespula germanica in South Africa. Insectes Soc 67:229–238. https://doi.org/10.1007/s00040-020-00752-x
Article
Google Scholar
Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B (2016) Is there a genetic paradox of biological invasion? Annu Rev Ecol Evol Syst 47:51–72. https://doi.org/10.1146/annurev-ecolsys-121415-032116
Article
Google Scholar
Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform. https://doi.org/10.1177/117693430500100003
Article
Google Scholar
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299
CAS
PubMed
Google Scholar
Forsman A (2014) Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. PNAS 111:302–307. https://doi.org/10.1073/pnas.1317745111
CAS
Article
PubMed
Google Scholar
Goldarazena A, De Heredia IP, Romon P, Iturrondobeitia JC, Gonzalez M, Lopez S (2015) Spread of the yellow-legged hornet Vespa velutina nigrithorax du Buysson (Hymenoptera: Vespidae) across Northern Spain. EPPO Bulletin 45:133–138. https://doi.org/10.1111/epp.12185
Article
Google Scholar
Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x
Article
Google Scholar
Granato A, Negrisolo E, Bonomi J, Zulian L, Cappa F, Bortolotti L, Mutinelli F (2019) Recent confirmation of a single haplotype in the Italian population of Vespa velutina. Biol Invasions 21:2811–2817. https://doi.org/10.1007/s10530-019-02051-4
Article
Google Scholar
Grosso-Silva JM, Maia M (2012) Vespa velutina Lepeletier, 1836 (Hymenoptera, Vespidae), new species for Portugal. Arquiv Entomol 6:53–54
Google Scholar
Hasegawa E, Takahashi J (2002) Microsatellite loci for genetic research in the hornet Vespa mandarinia and related species. Mol Ecol Notes 2:306–308. https://doi.org/10.1046/j.1471-8286.2002.00224.x
CAS
Article
Google Scholar
Haxaire J, Tamisier JP, Bouguet JP (2006) Vespa velutina Lepeletier 1836, une redoutable nouveauté pour la faune de France (Hym., Vespidae). Bull Soc Entomol Fr 111:194
Article
Google Scholar
Heimpel GE, De Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230. https://doi.org/10.1146/annurev.ento.53.103106.093441
CAS
Article
PubMed
Google Scholar
Husemann M, Sterr A, Maack S, Abraham R (2020) The northernmost record of the Asian hornet Vespa velutina nigrithorax (Hymenoptera, Vespidae). Evol Syst 4:1. https://doi.org/10.3897/evolsyst.4.47358
Article
Google Scholar
Jones EP, Conyers C, Tomkies V, Semmence N, Fouracre D, Wakefield M, Stainton K (2020) Managing incursions of Vespa velutina nigrithorax in the UK: an emerging threat to apiculture. Sci Rep 10:1–8. https://doi.org/10.1038/s41598-020-76690-2
CAS
Article
Google Scholar
Keeling MJ, Franklin DN, Datta S, Brown MA, Budge GE (2017) Predicting the spread of the Asian hornet (Vespa velutina) following its incursion into Great Britain. Sci Rep 7:1–7. https://doi.org/10.1038/s41598-017-06212-0
CAS
Article
Google Scholar
Kenis M, Auger-Rozenberg M-A, Roques A, Timms L, Péré C, Cock MJW, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. Biol Invasions 11:21–45. https://doi.org/10.1007/s10530-008-9318-y
Article
Google Scholar
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191. https://doi.org/10.1111/1755-0998.12387
CAS
Article
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
CAS
Article
PubMed
PubMed Central
Google Scholar
Laurino D, Lioy S, Carisio L, Manino A, Porporato M (2020) Vespa velutina: an alien driver of honey bee colony losses. Diversity 12:5. https://doi.org/10.3390/d12010005
Article
Google Scholar
Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. https://doi.org/10.1016/j.tree.2005.02.004
Article
PubMed
Google Scholar
López S, González M, Goldarazena A (2011) Vespa velutina lepeletier, 1836 (Hymenoptera: Vespidae): first records in Iberian Peninsula. EPPO Bull 41:439–441. https://doi.org/10.1111/j.1365-2338.2011.02513.x
Article
Google Scholar
Martín-Hernández R et al (2018) Nosema ceranae in Apis mellifera: a 12 years postdetection perspective. Environ Microbiol 20:1302–1329. https://doi.org/10.1111/1462-2920.14103
Article
PubMed
Google Scholar
Mikheyev A, Bresson S, Conant P (2009) Single-queen introductions characterize regional and local invasions by the facultatively clonal little fire ant Wasmannia auropunctata. Mol Ecol 18:2937–2944. https://doi.org/10.1111/j.1365-294X.2009.04213.x
CAS
Article
PubMed
Google Scholar
Moller H (1996) Lessons for invasion theory from social insects. Biol Conserv 78:125–142. https://doi.org/10.1016/0006-3207(96)00022-5
Article
Google Scholar
Monceau K, Arca M, Leprêtre L, Mougel F, Bonnard O, Silvain J-F, Maher N, Arnold G, Thiery D (2013a) Native prey and invasive predator patterns of foraging activity: the case of the yellow-legged hornet predation at European honeybee hives. PLoS One 8:e66492. https://doi.org/10.1371/journal.pone.0066492
CAS
Article
PubMed
PubMed Central
Google Scholar
Monceau K, Maher N, Bonnard O, Thiéry D (2013b) Predation pressure dynamics study of the recently introduced honeybee killer Vespa velutina: learning from the enemy. Apidologie 44:209–221. https://doi.org/10.1007/s13592-012-0172-7
Article
Google Scholar
Monceau K, Bonnard O, Thiéry D (2014) Vespa velutina: a new invasive predator of honeybees in Europe. J Pest Sci 87:1–16. https://doi.org/10.1007/s10340-013-0537-3
Article
Google Scholar
Monceau K, Maher N, Bonnard O, Thiéry D (2015) Evaluation of competition between a native and an invasive hornet species: Do seasonal phenologies overlap? Bull Entomol Res 105:462–469. https://doi.org/10.1017/S0007485315000280
CAS
Article
PubMed
Google Scholar
Mutinelli F et al (2014) Detection of Aethina tumida Murray (Coleoptera: Nitidulidae.) in Italy: outbreaks and early reaction measures. J Apic Res 53:569–575. https://doi.org/10.3896/IBRA.1.53.5.13
Article
Google Scholar
Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590
CAS
Article
PubMed
PubMed Central
Google Scholar
Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press
Google Scholar
Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10. https://doi.org/10.2307/2407137110
Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49:1–6. https://doi.org/10.3896/IBRA.1.49.1.01
Article
Google Scholar
Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65. https://doi.org/10.1046/j.1365-294X.2004.02008.x
CAS
Article
PubMed
Google Scholar
Paine T, Millar J (2002) Insect pests of eucalypts in California: implications of managing invasive species. Bull Entomol Res 92:147–151. https://doi.org/10.1046/j.1365-294X.2004.02008.x
CAS
Article
PubMed
Google Scholar
Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchdan update. Bioinformatics 28:2537–2539
CAS
Article
PubMed
PubMed Central
Google Scholar
Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. Heredity 95:536–539. https://doi.org/10.1093/jhered/esh074
CAS
Article
Google Scholar
Poidatz J, Monceau K, Bonnard O, Thiéry D (2018) Activity rhythm and action range of workers of the invasive hornet predator of honeybees Vespa velutina, measured by radio frequency identification tags. Ecol Evol 8:7588–7598. https://doi.org/10.1002/ece3.4182
Article
PubMed
PubMed Central
Google Scholar
Porporato M, Manino A, Laurino D, Demichelis S (2014) Vespa velutina Lepeletier (Hymenoptera Vespidae): a first assessment two years after its arrival in Italy. Redia 97:189–194
Google Scholar
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1093/genetics/155.2.945
CAS
Article
PubMed
PubMed Central
Google Scholar
Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. PNAS 94:9197–9201. https://doi.org/10.1073/pnas.94.17.9197
CAS
Article
PubMed
PubMed Central
Google Scholar
Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103. https://doi.org/10.1111/j.0014-3820.2001.tb00629.x
CAS
Article
PubMed
Google Scholar
Requier F, Garnery L, Kohl PL, Njovu HK, Pirk CW, Crewe RM, Steffan-Dewenter I (2019) The conservation of native honey bees is crucial. Trends Ecol Evol 34:789–798. https://doi.org/10.1016/j.tree.2019.04.008
Article
PubMed
Google Scholar
Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225
Article
PubMed
Google Scholar
Robinet C, Suppo C, Darrouzet E (2017) Rapid spread of the invasive yellow-legged hornet in France: the role of human-mediated dispersal and the effects of control measures. J Appl Ecol 54:205–215. https://doi.org/10.1111/1365-2664.12724
Article
Google Scholar
Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. https://doi.org/10.1016/j.tree.2007.07.002
Article
PubMed
Google Scholar
Rome Q, Perrard A, Muller F, Villemant C (2011) Monitoring and control modalities of a honeybee predator, the yellow-legged hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Newslett IUCN/SSC Invasive Species Special Group Aliens 31:7–15
Google Scholar
Rome Q, Dambrine L, Onate C, Muller F, Villemant C, García-Pérez A, Maia M, Carvalho-Esteves P, Bruneau E (2013) Spread of the invasive hornet Vespa velutina Lepeletier, 1836, in Europe in 2012 (Hym., Vespidae). Bull Soc Entomol Fr 118:21–22
Article
Google Scholar
RStudio Team (2015) RStudio: integrated environment development for R, Boston, Massachusetts http://www.rstudio.com/
Schmid-Hempel P, Schmid-Hempel R, Brunner P, Seeman O, Allen G (2007) Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. Heredity 99:414–422. https://doi.org/10.1038/sj.hdy.6801017
CAS
Article
PubMed
Google Scholar
Shi M-M, Chen X-Y (2012) Leading-edge populations do not show low genetic diversity or high differentiation in a wind-pollinated tree. Popul Ecol 54:591–600. https://doi.org/10.1007/s10144-012-0332-7
Article
Google Scholar
Smit J, Noordijk J, Zeegers T (2018) Will the Asian hornet (Vespa velutina) settle in the Nederlands? Entomolog Ber 78:2–6
Google Scholar
Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat M-P (2018) Drivers of colony losses. Curr Opin Insect Sci 26:142–148. https://doi.org/10.1016/j.cois.2018.02.004
Article
PubMed
Google Scholar
Swaegers J, Mergeay J, Therry L, Larmuseau M, Bonte D, Stoks R (2013) Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly. Heredity 111:422–429. https://doi.org/10.1038/hdy.2013.64
CAS
Article
PubMed
PubMed Central
Google Scholar
Takahashi J, Okuyama H, Kiyoshi T, Takeuchi T, Martin SJ (2019) Origins of Vespa velutina hornets that recently invaded Iki Island. Jpn Jersey Island, UK Mitochondrial DNA A DNA Mapp Seq Anal 30:434–439. https://doi.org/10.1080/24701394.2018.1538366
CAS
Article
Google Scholar
Turchi L, Derijard B (2018) Options for the biological and physical control of Vespa velutina nigrithorax (Hym.: Vespidae) in Europe: a review. J Appl Entomol 142:553–562. https://doi.org/10.1111/jen.12515
CAS
Article
Google Scholar
Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379. https://doi.org/10.1046/j.1471-8286.2002.00228.x-i2
Article
Google Scholar
Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
CAS
Article
Google Scholar
Villemant C, Haxaire J, Streito JC (2006) Premier bilan de l’invasion de Vespa velutina Lepeletier en France (Hymenoptera, Vespidae). Bull Soc Entomol Fr 111:535–538
Article
Google Scholar
Villemant C, Barbet-Massin M, Perrard A, Muller F, Gargominy O, Jiguet F, Rome Q (2011) Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol Conserv 144:2142–2150. https://doi.org/10.1016/j.biocon.2011.04.009
Article
Google Scholar
Wares JP, Hughes AR, Grosberg RK (2005) Mechanisms that drive evolutionary change: Insights from species introduction and invasions. In: Species invasions : insights into ecology, evolution, and biogeography. Sinauer Associates Sunderland, MA, pp 229–257
Witt R (2015) Erstfund eines Nestes der Asiatischen Hornisse Vespa velutina Lepeletier, 1838 in Deutschland und Details zum Nestbau (Hymenoptera, Vespinae). Ampulex 7:42–53
Google Scholar