Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565. https://doi.org/10.1111/j.1365-294X.2010.04898.x
CAS
Article
PubMed
Google Scholar
Andriuzzi WS, Ngo P-TT, Geisen S et al (2016) Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biol Fertil Soils 52:91–100. https://doi.org/10.1007/s00374-015-1056-6
CAS
Article
Google Scholar
Bohlen PJ, Scheu S, Hale CM et al (2004) Non-native invasive earthworms as agents of change in northern temperate forests In a nutshell. Front Ecol Environ 2(8):427–435
Article
Google Scholar
Bonkowski M, Dumack K, Fiore-Donno AM (2019) The protists in soil: a token of untold eukaryotic diversity. In: van Elsas JD, Trevors JT, Rosado AS, Nannipieri P (eds) Modern soil microbiology. CRC Press, Boca Raton
Google Scholar
Bonkowski M, Geoghegan IE, Birch ANE, Griffiths BS (2001) Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos 95:441–450. https://doi.org/10.1034/j.1600-0706.2001.950309.x
Article
Google Scholar
Bonkowski M, Schaefer M (1997) Interactions between earthworms and soil protozoa: a trophic component in the soil food web. Soil Biol Biochem 29:499–502. https://doi.org/10.1016/S0038-0717(96)00107-1
CAS
Article
Google Scholar
Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231. https://doi.org/10.1007/BF02183068
CAS
Article
Google Scholar
Bugge Harder C, Rønn R, Brejnrod A et al (2016) Local diversity of heathland Cercozoa explored by in-depth sequencing Local diversity of heathland Cercozoa explored by in-depth sequencing. ISME J 10:2488–2497. https://doi.org/10.1038/ismej.2016.31
CAS
Article
Google Scholar
Butenschön O, Marhan S, Langel R, Scheu S (2009) Carbon and nitrogen mobilisation by earthworms of different functional groups as affected by soil sand content. Pedobiologia (jena) 52:263–272. https://doi.org/10.1016/j.pedobi.2008.11.001
CAS
Article
Google Scholar
Callaham MA, González G, Hale CM, et al (2006) Policy and management responses to earthworm invasions in North America. In: Biological Invasions. Springer, pp 1317–1329
Cameron EK, Bayne EM, Clapperton MJ (2007) Human-facilitated invasion of exotic earthworms into northern boreal forests. Ecoscience 14:482–490. https://doi.org/10.2980/1195-6860
Article
Google Scholar
Clarholm M (1981) Protozoan grazing of bacteria in soil - impact and importance. Microb Ecol 7:343–350
CAS
Article
PubMed
Google Scholar
Clarholm M (1985) Interactions of bacteria protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187
CAS
Article
Google Scholar
Craven D, Thakur MP, Cameron EK et al (2017) The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis). Glob Chang Biol 23:1065–1074. https://doi.org/10.1111/gcb.13446
Article
PubMed
Google Scholar
Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex 1695:1–9
Google Scholar
de Araujo ASF, Mendes LW, Lemos LN et al (2018) Protist species richness and soil microbiome complexity increase towards climax vegetation in the Brazilian Cerrado. Commun Biol 1:1–8. https://doi.org/10.1038/s42003-018-0129-0
Article
Google Scholar
De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574
Article
PubMed
Google Scholar
Degrune F, Dumack K, Fiore-Donno AM, Bonkowski M (2019) Distinct communities of Cercozoa at different soil depths in a temperate agricultural field. FEMS Microbiol Ecol 95:41. https://doi.org/10.1093/femsec/fiz041
CAS
Article
Google Scholar
Delgado-Baquerizo M, Reich PB, Trivedi C et al (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol 4:210–220. https://doi.org/10.1038/s41559-019-1084-y
Article
PubMed
Google Scholar
Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366
Google Scholar
Dumack K, Fiore-Donno AM, Bass D, Bonkowski M (2019) Making sense of environmental sequencing data: ecologically important functional traits of the protistan groups Cercozoa and Endomyxa (Rhizaria). Mol Ecol Resour 20:398–403. https://doi.org/10.1111/1755-0998.13112
Article
PubMed
Google Scholar
Dumack K, Flues S, Hermanns K, Bonkowski M (2017) Rhogostomidae (Cercozoa ) from soils, roots and plant leaves (Arabidopsis thaliana): description of Rhogostoma epiphylla sp. nov. and R. cylindrica sp. nov. Eur J Protistol 60:76–86. https://doi.org/10.1016/j.ejop.2017.06.001
Article
PubMed
Google Scholar
Dumack K, Müller M, Bonkowski M (2016) Description of Lecythium terrestris sp. nov. (Chlamydophryidae, Cercozoa), a soil dwelling protist feeding on fungi and algae. Protist 572:51–58. https://doi.org/10.1016/j.protis.2016.01.001
CAS
Article
Google Scholar
Dumack K, Pundt J, Bonkowski M (2018) Food choice experiments indicate selective fungivorous predation in Fisculla terrestris (Thecofilosea, Cercozoa). J Eukaryot Microbiol 66:525–527. https://doi.org/10.1111/jeu.12680
Article
PubMed
Google Scholar
Eisenhauer N (2010) The action of an animal ecosystem engineer: identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia (jena) 53:343–352. https://doi.org/10.1016/j.pedobi.2010.04.003
Article
Google Scholar
Eisenhauer N, Ferlian O, Craven D et al (2019) Ecosystem responses to exotic earthworm invasion in northern North American forests. Res Ideas Outcomes. https://doi.org/10.3897/rio.5.e34564
Article
PubMed
PubMed Central
Google Scholar
Eisenhauer N, Partsch S, Parkinson D, Scheu S (2007) Invasion of a deciduous forest by earthworms: changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol Biochem 39:1099–1110. https://doi.org/10.1016/j.soilbio.2006.12.019
CAS
Article
Google Scholar
Fahey TJ, Yavitt JB, Sherman RE et al (2013) Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecol Appl 23:1185–1201. https://doi.org/10.1890/12-1760.1
Article
PubMed
Google Scholar
Ferlian O, Eisenhauer N, Aguirrebengoa M et al (2018) Invasive earthworms erode soil biodiversity: a meta-analysis. J Anim Ecol 87:162–172. https://doi.org/10.1111/1365-2656.12746
Article
PubMed
Google Scholar
Ferlian O, Thakur MP, Castañeda González A et al (2020) Soil chemistry turned upside down: a meta-analysis of invasive earthworm effects on soil chemical properties. Ecology 101:1–12. https://doi.org/10.1002/ecy.2936
Article
Google Scholar
Fiore-Donno AM, Richter-Heitmann T, Bonkowski M (2020) Contrasting responses of protistan plant parasites and phagotrophs to ecosystems, land management and soil properties. Front Microbiol 11:1–13. https://doi.org/10.3389/fmicb.2020.01823
Article
Google Scholar
Fiore-Donno AM, Richter-Heitmann T, Degrune F et al (2019) Functional traits and spatio-temporal structure of a major group of soil protists (Rhizaria: Cercozoa ) in a temperate grassland. Front Microbiol 10:1–12. https://doi.org/10.3389/fmicb.2019.01332
Article
Google Scholar
Fiore-Donno AM, Rixen C, Rippin M et al (2018) New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts. Mol Ecol Resour 18:229–239. https://doi.org/10.1111/1755-0998.12729
CAS
Article
PubMed
Google Scholar
Fisichelli NA, Frelich LE, Reich PB, Eisenhauer N (2013) Linking direct and indirect pathways mediating earthworms, deer, and understory composition in Great Lakes forests. Biol Invasions 15:1057–1066. https://doi.org/10.1007/s10530-012-0350-6
Article
Google Scholar
Flues S, Bass D, Bonkowski M (2017) Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function. Environ Microbiol 19:3297–3309. https://doi.org/10.1111/1462-2920.13824
CAS
Article
PubMed
Google Scholar
Frelich LE, Blossey B, Cameron EK et al (2019) Side-swiped: ecological cascades emanating from earthworm invasions. Front Ecol Environ 17:502–510. https://doi.org/10.1002/fee.2099
Article
PubMed
PubMed Central
Google Scholar
Frelich LE, Hale CM, Reich PB, et al (2006) Earthworm invasion into previously earthworm-free temperate and boreal forests. In: Biological invasions belowground: earthworms as invasive species. Springer pp 35–45
Garbelotto M, Hayden KJ (2012) Sudden oak death: interactions of the exotic oomycete phytophthora ramorum with naïve North American hosts. Eukaryot Cell 11:1313–1323
CAS
Article
PubMed
PubMed Central
Google Scholar
Geisen S, Koller R, Hünninghaus M et al (2015a) The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem 94:10–18. https://doi.org/10.1016/j.soilbio.2015.11.010
CAS
Article
Google Scholar
Geisen S, Lara E, Mitchell E, et al (2020) Soil protist life matters. Soil Organisms 92(3): 189–196. Soil Org 92:189–196. https://doi.org/10.25674/so92iss3pp189
Geisen S, Tveit AT, Clark IM et al (2015b) Metatranscriptomic census of active protists in soils. ISME J 9:2178–2190. https://doi.org/10.1038/ismej.2015.30
CAS
Article
PubMed
PubMed Central
Google Scholar
Glücksman E, Bell T, Griffiths RI, Bass D (2010) Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol 12:3105–3113. https://doi.org/10.1111/j.1462-2920.2010.02283.x
Article
PubMed
Google Scholar
Grossmann L, Jensen M, Heider D et al (2016) Protistan community analysis: key findings of a large-scale molecular sampling. ISME J 10:2269–2279. https://doi.org/10.1038/ismej.2016.10
Article
PubMed
PubMed Central
Google Scholar
Guajardo J, Saa S, Riquelme N et al (2019) Characterization of oomycete species associated with root and crown rot of english walnut in chile. Plant Dis 103:691–696. https://doi.org/10.1094/PDIS-07-18-1160-RE
CAS
Article
PubMed
Google Scholar
Guillou L, Bachar D, Audic S et al (2013) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:597–604. https://doi.org/10.1093/nar/gks1160
CAS
Article
Google Scholar
Hendrix PF, Bohlen PJ (2002) Exotic earthworm invasions in North America: ecological and policy implications. Bioscience 52:801–811
Article
Google Scholar
Hirakata Y, Hatamoto M, Oshiki M et al (2019) Temporal variation of eukaryotic community structures in UASB reactor treating domestic sewage as revealed by 18S rRNA gene sequencing. Sci Rep 9:12783. https://doi.org/10.1038/s41598-019-49290-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Hittorf M, Letsch-Praxmarer S, Windegger A et al (2020) Revised Taxonomy and Expanded Biodiversity of the Phytomyxea (Rhizaria, Endomyxa). J Eukaryot Microbiol 67:648–659. https://doi.org/10.1111/jeu.12817
Article
PubMed
PubMed Central
Google Scholar
Holdsworth AR, Frelich LE, Reich PB (2007) Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests. Ecol Appl 17:1666–1677. https://doi.org/10.1890/05-2003.1
Article
PubMed
Google Scholar
Jauss R, Walden S, Fiore-Donno A et al (2020) From forest soil to the canopy: increased habitat diversity does not increase species richness of Cercozoa and Oomycota in tree canopies. Front Microbiol 11:592189. https://doi.org/10.3389/fmicb.2020.592189
Article
PubMed
PubMed Central
Google Scholar
Jochum M, Ferlian O, Thakur MP et al (2021) Earthworm invasion causes declines across soil fauna size classes and biodiversity facets in northern North American forests. Oikos 130:766–780. https://doi.org/10.1111/oik.07867
Article
Google Scholar
Jung T, Hudler G, Jensen-Tracy S et al (2005) Involvement of phytophthora species in the decline of European beech in Europe and the USA. Mycologist 19:159–166. https://doi.org/10.1017/S0269-915X(05)00405-2
Article
Google Scholar
Knollenberg WG, Merritt RW, Lawson DL (1985) Consumption of leaf litter by lumbricus terrestris (Oligochaeta) on a michigan woodland floodplain. Am Midl Nat 113:1–6
Article
Google Scholar
Lavelle P, Bignell D, Lepage M et al (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193
CAS
Google Scholar
Lentendu G, Wubet T, Chatzinotas A et al (2014) Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol Ecol 23:3341–3355. https://doi.org/10.1111/mec.12819
CAS
Article
PubMed
Google Scholar
Maraun M, Alphei J, Bonkowski M et al (1999) Middens of the earthworm Lumbricus terrestris (Lumbricidae): microhabitats for micro- and mesofauna in forest soil. Pedobiologia (jena) 43:276–287
Google Scholar
Moore JC, McCann K, De Ruiter PC (2005) Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. In: Pedobiologia. Elsevier GmbH, pp 499–510
Nuzzo VA, Maerz JC, Blossey B (2009) Earthworm invasion as the driving force behind plant invasion and community change in Northeastern North American Forests. Conserv Biol 23:966–974. https://doi.org/10.1111/j.1523-1739.2009.01168.x
Article
PubMed
Google Scholar
Oksanen J, Blanchet FG, Kindt R, et al (2014) Vegan: community ecology package. R Package Version 2.2–0. http://cran.rproject.org/package=vegan
Öztoprak H, Walden S, Heger T et al (2020) What drives the diversity of the most abundant terrestrial cercozoan family (Rhogostomidae, cercozoa, rhizaria)? Microorganisms 8:1123. https://doi.org/10.3390/microorganisms8081123
CAS
Article
PubMed Central
Google Scholar
Schaefer M, Schauermann J (1990) The soil fauna of beech forests: comparison between a mull and a moder soil. Pedobiologia (jena) 34:299–314
Google Scholar
Scheu S (1987) The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a decidous forest. Oecologia 72:197–201
CAS
Article
PubMed
Google Scholar
Scheu S (1994) There is an earthworm mobilizable nitrogen pool in soil. Pedobiologia (jena) 38:243–249
Google Scholar
Scheu S, Setälä H (2002) Multitrophic interactions in decomposer food-webs. In: Tscharntke T, Hawkins B (eds) Multitrophic level interactions. Cambridge University Press, Cambridge
Google Scholar
Scheu S, Wolters V (1991) Influence of fragmentation and bioturbation on the decomposition of 14C-labelled beech leaf litter. Soil Biol Biochem 23:1029–1034
CAS
Article
Google Scholar
Schlaghamerský J, Eisenhauer N, Frelich LE (2014) Earthworm invasion alters enchytraeid community composition and individual biomass in northern hardwood forests of North America. Appl Soil Ecol 83:159–169. https://doi.org/10.1016/j.apsoil.2013.09.005
Article
Google Scholar
Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09
CAS
Article
PubMed
PubMed Central
Google Scholar
Schröter D, Wolters V, De Ruiter PC (2003) C and N mineralisation in the decomposer food webs of a European forest transect. Oikos 102:294–308. https://doi.org/10.1034/j.1600-0579.2003.12064.x
Article
Google Scholar
Seppey CVW, Singer D, Fournier B et al (2017) Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem 112:68–76. https://doi.org/10.1016/j.soilbio.2017.05.002
CAS
Article
Google Scholar
Sibbald SJ, Archibald JM (2017) More protist genomes needed. Nat Publ Gr 1:1–3. https://doi.org/10.1038/s41559-017-0145
Article
Google Scholar
Singer D, Kosakyan A, Seppey CVW et al (2018) Environmental filtering and phylogenetic clustering correlate with the distribution patterns of cryptic protist species. Ecology 99:904–914. https://doi.org/10.1002/ecy.2161
Article
PubMed
Google Scholar
Singer D, Mitchell EAD, Payne RJ et al (2019) Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists. Mol Ecol 28:3089–3100. https://doi.org/10.1111/mec.15117
Article
PubMed
Google Scholar
Straube D, Johnson EA, Parkinson D et al (2009) Nonlinearity of effects of invasive ecosystem engineers on abiotic soil properties and soil biota. Oikos 118:885–896. https://doi.org/10.1111/j.1600-0706.2009.17405.x
CAS
Article
Google Scholar
Tao J, Chen X, Liu M et al (2009) Soil Biology & Biochemistry Earthworms change the abundance and community structure of nematodes and protozoa in a maize residue amended rice – wheat rotation agro-ecosystem. Soil Biol Biochem 41:898–904. https://doi.org/10.1016/j.soilbio.2008.12.002
CAS
Article
Google Scholar
Tedersoo L, Bahram M, Cajthaml T et al (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J 10:346–362. https://doi.org/10.1038/ismej.2015.116
CAS
Article
PubMed
Google Scholar
Tiunov AV, Bonkowski M, Alphei J, Scheu S (2001) Microflora protozoa and nematoda in lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia 60:46–60
Article
Google Scholar
Trap J, Bonkowski M, Plassard C et al (2016) Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 398:1–24. https://doi.org/10.1007/s11104-015-2671-6
CAS
Article
Google Scholar
Urich T, Lanzén A, Qi J et al (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3:e2527. https://doi.org/10.1371/journal.pone.0002527
CAS
Article
PubMed
PubMed Central
Google Scholar
Vargas LIR, Negron-Ortiz V (2013) Root and soil-borne Oomycetes (Heterokontophyta) and fungi associated with the endangered conifer, Torreya taxifolia Arn. (Taxaceae) in Georgia and Florida, USA. Life Excit Biol 1:202–223. https://doi.org/10.9784/LEB1(4)RiveraVargas.03
Article
Google Scholar
Venter PC, Nitsche F, Domonell A et al (2017) The protistan microbiome of grassland soil: diversity in the mesoscale. Protist 168:546–564. https://doi.org/10.1016/j.protis.2017.03.005
Article
PubMed
Google Scholar
Voss C, Fiore-Donno AM, Guerreiro MA et al (2019) Metatranscriptomics reveals unsuspected protistan diversity in leaf litter across temperate beech forests, with Amoebozoa the dominating lineage. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiz142
Article
PubMed
Google Scholar
Weber AA-T, Pawlowski J (2013) Can abundance of protists be inferred from sequence data: a case study of foraminifera. PLoS ONE 8:e56739
CAS
Article
PubMed
PubMed Central
Google Scholar