Skip to main content

The second wave of earthworm invasions in North America: biology, environmental impacts, management and control of invasive jumping worms

Abstract

The invasion of jumping worms, a small group of pheretimoid earthworm species from Asia, has increasingly become an ecological, environmental and conservation issue in forest ecosystems and urban-suburban landscapes around the world. Their presence is often noticed due to their high abundance, distinctive “jumping” behavior, and prominent granular casts on the soil surface. Although they are known to affect soil carbon dynamics and nutrient availability, no single paper has summarized their profound impacts on soil biodiversity, plant community, and animals of all trophic groups that rely on soil and the leaf litter layer for habitat, food, and shelter. In this study, we summarize the biology, invasion, and ecological impacts of invasive jumping worms across North America. We highlight potential impacts of this second wave of earthworm invasion, contrast them with the preceding European earthworm invasion in temperate forests in North America, and identify annual life cycle, reproductive and cocoon survival strategies, casting behavior and co-invasion dynamics as the key factors that contribute to their successful invasion and distinct ecological impacts. We then suggest potential management and control strategies for practitioners and policy makers, underscore the importance of coordinated community science projects in tracking the spread, and identify knowledge gaps that need to be addressed to understand and control the invasion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Angst G, Mueller CW, Prater I et al (2019) Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Commun Biol 2:441

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Armstrong GW, Mahmood A, Nugent A et al (2017) WORMSPREAD: an individual-based model of invasive earthworm population dynamics. Comput Ecol Softw 7:109–122

    Google Scholar 

  3. Aspe NM, James SW (2018) Molecular phylogeny and biogeographic distribution of pheretimoid earthworms (clitellata: Megascolecidae) of the Philippine archipelago. Eur J Soil Biol 85:89–97

    Article  Google Scholar 

  4. Bal TL, Storer AJ, Jurgensen MF (2018) Evidence of damage from exotic invasive earthworm activity was highly correlated to sugar maple dieback in the Upper Great Lakes region. Biol Invasions 20:151–164

    Article  Google Scholar 

  5. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    CAS  PubMed  Article  Google Scholar 

  6. Barros E, Grimaldi M, Sarrazin M et al (2004) Soil physical degradation and changes in macrofaunal communities in Central Amazon. Appl Soil Ecol 26:157–168

    Article  Google Scholar 

  7. Bartz MLC, Brown GG, da Rosa MG et al (2014a) Earthworm richness in land-use systems in Santa Catarina, Brazil. Appl Soil Ecol 83:59–70

    Article  Google Scholar 

  8. Bartz MLC, Brown GG, Pasini A et al (2009) Earthworm communities in organic and conventional coffee cultivation. Pesqui Agropecu Bras 44:928–933

    Article  Google Scholar 

  9. Bartz MLC, Pasini A, Brown GG (2014b) Earthworm richness, abundance and biomass in different land use systems in northern Paraná, Brazil (Oligochaeta). In: Pavlíček T, Cardet P, Almeida MT, Pascoal C, Cássio F (eds) Advances in earthworm taxonomy VI (Annelida: Oligochaeta). Kasparek Verlag, Heidelberg, pp 59–73

    Google Scholar 

  10. Beausejour R, Handa IT, Lechowicz MJ et al (2015) Historical anthropogenic disturbances influence patterns of non-native earthworm and plant invasions in a temperate primary forest. Biol Invasions 17:1267–1281

    Article  Google Scholar 

  11. Bellitürk K, Görres JH, Kunkle J et al (2015) Can commercial mulches be reservoirs of invasive earthworms? Promotion of ligninolytic enzyme activity and survival of Amynthas agrestis (Goto and Hatai, 1899). Appl Soil Ecol 87:27–31

    Article  Google Scholar 

  12. Bernard MJ, Neatrour MA, McCay TS (2009) Influence of soil buffering capacity on earthworm growth, survival, and community composition in the Western Adirondacks and Central New York. Northeast Nat 16:269–284

    Article  Google Scholar 

  13. Bethke PG, Midgley MG (2020) Amynthas spp. impacts on seedlings and forest soils are tree species-dependent. Biol Invasions 22:3145–3162

    Article  Google Scholar 

  14. Blackmon JH (2009) The use of fire in the control of invasive, epigeic earthworms species in the Southeastern United States. (MS Thesis) University of Georgia, Athens, GA, USA.

  15. Blackmon JH, Taylor MK, Carrera-Martinez R et al (2019) Temperature affects hatching success of cocoons in the invasive Asian earthworm Amynthas agrestis from the Southern Appalachians. Southeast Nat 18:270–280

    Article  Google Scholar 

  16. Blakemore RJ (2000) Cosmopolitan earthworms- an eco-taxonomic guide to the peregrine species of the world. VermEcology, pp. 426

  17. Blakemore RJ (2005) A series of searchable texts on earthworm biodiversity, ecology and systematics from various regions of the world. Yokohama National University, Yokohama

    Google Scholar 

  18. Bohlen PJ, Pelletier DM, Groffman PM et al (2004a) Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems 7:13–27

    CAS  Article  Google Scholar 

  19. Bohlen PJ, Scheu S, Hale CM et al (2004b) Non-native invasive earthworms as agents of change in northern temperate forests. Front Ecol Environ 2:427–435

    Article  Google Scholar 

  20. Bouché MB (1972) Lombriciens de France. Écologie et Systématique. Institut National de la Recherche Agronomique, Dijon, France

  21. Bouché MB (1977) Strategies lombriciennes. In: Lohm U and Persson T (eds) Soil organisms as components of ecosystems. Ecological Bulletins Stockholm, pp 122–132

  22. Bowe A, Dobson A, Blossey B (2020) Impacts of invasive earthworms and deer on native ferns in forests of northeastern North America. Biol Invasions 22:1431–1445

    Article  Google Scholar 

  23. Brown A (1878) Plants introduced with ballast and on made land. Bull Torrey Bot Club 6(45):255–258

    Article  Google Scholar 

  24. Brown GG, James SW, Pasini A et al (2006) Exotic, peregrine, and invasive earthworms in Brazil: diversity, distribution, and effects on soils and plants. Carib J Sci 42:339–358

    Google Scholar 

  25. Burtelow AE, Bohlen PJ, Groffman PM (1998) Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States. Appl Soil Ecol 9:197–202

    Article  Google Scholar 

  26. Burton TM, Likens GE (1975) Energy flow and nutrient cycling in salamander populations in Hubbard Brook Experimental Forest, New Hampshire. Ecology 56:1068–1080

    CAS  Article  Google Scholar 

  27. Butt KR (1991) The effects of temperature on the intensive production of Lumbricus terrestris (Oligochaeta, Lumbricidae). Pedobiologia 35:257–264

    Google Scholar 

  28. Butt KR (2011) Food quality affects production of Lumbricus terrestris (L.) under controlled environmental conditions. Soil Biol Biochem 43:2169–2175

    CAS  Article  Google Scholar 

  29. CABI (2018) Amynthas agrestis. Invasive Species Compendium. CAB International, Wallingford, UK

  30. Callaham MA, Hendrix PF, Phillips RJ (2003) Occurrence of an exotic earthworm (Amynthas agrestis) in undisturbed soils of the southern Appalachian Mountains, USA. Pedobiologia 47:466–470

    Article  Google Scholar 

  31. Callaham MA, Gonzalez G, Hale CM et al (2006) Policy and management responses to earthworm invasions in North America. Biol Invasions 8:1317–1329

    Article  Google Scholar 

  32. Cameron EK, Bayne EM (2009) Road age and its importance in earthworm invasion of northern boreal forests. J Appl Ecol 46:28–36

    Article  Google Scholar 

  33. Cameron EK, Bayne EM (2012) Invasion by a non-native ecosystem engineer alters distribution of a native predator. Divers Distrib 18:1190–1198

    Article  Google Scholar 

  34. Chang CH, Chen JH (2005) Taxonomic status and intraspecific phylogeography of two sibling species of Metaphire (Oligochaeta: Megascolecidae) in Taiwan. Pedobiologia 49:591–600

    Article  Google Scholar 

  35. Chang CH, James S (2011) A critique of earthworm molecular phylogenetics. Pedobiologia 54:S3–S9

    Article  Google Scholar 

  36. Chang CH, Lin YH, Chen IH et al (2007) Taxonomic re-evaluation of the Taiwanese montane earthworm Amynthas wulinensis Tsai, Shen & Tsai, 2001 (Oligochaeta: Megascolecidae): Polytypic species or species complex? Org Divers Evol 7:231–240

    Article  Google Scholar 

  37. Chang CH, Lin SM, Chen JH (2008) Molecular systematics and phylogeography of the gigantic earthworms of the Metaphire formosae species group (Clitellata, Megascolecidae). Mol Phylogenet Evol 49:958–968

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Chang CH, Shen HP, Chen JH (2009a) Earthworm fauna of Taiwan. National Taiwan University Press, Taipei

    Google Scholar 

  39. Chang CH, Rougerie R, Chen JH (2009b) Identifying earthworms through DNA barcodes: Pitfalls and promise. Pedobiologia 52:171–180

    CAS  Article  Google Scholar 

  40. Chang CH, Snyder BA, Szlavecz K (2016a) Asian pheretimoid earthworms in North America north of Mexico: an illustrated key to the genera Amynthas, Metaphire, Pithemera, and Polypheretima (Clitellata: Megascolecidae). Zootaxa 4179:495–529

    PubMed  Article  Google Scholar 

  41. Chang CH, Szlavecz K, Buyer JS (2016b) Species-specific effects of earthworms on microbial communities and the fate of litter-derived carbon. Soil Biol Biochem 100:129–139

    CAS  Article  Google Scholar 

  42. Chang CH, Szlavecz K, Filley T et al (2016c) Belowground competition among invading detritivores. Ecology 97:160–170

    PubMed  Article  Google Scholar 

  43. Chang CH, Szlavecz K, Buyer JS (2017) Amynthas agrestis invasion increases microbial biomass in Mid-Atlantic deciduous forests. Soil Biol Biochem 114:189–199

    CAS  Article  Google Scholar 

  44. Chang CH, Johnston MR, Görres JH et al (2018) Co-invasion of three Asian earthworms, Metaphire hilgendorfi, Amynthas agrestis and Amynthas tokioensis in the USA. Biol Invasions 20:843–848

    Article  Google Scholar 

  45. Chkrebtii OA, Cameron EK, Campbell DA et al (2015) Transdimensional approximate Bayesian computation for inference on invasive species models with latent variables of unknown dimension. Comput Stat Data Anal 86:97–110

    Article  Google Scholar 

  46. Cope CG, Burns JH (2019) Effects of native deer on invasive earthworms depend on earthworm functional feeding group and correlate with earthworm body size. For Ecol Manage 435:180–186

    Article  Google Scholar 

  47. Craven D, Thakur MP, Cameron EK et al (2017) The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis). Glob Change Biol 23:1065–1074

    Article  Google Scholar 

  48. Csuzdi C, Pavlíček T, Nevo E (2008) Is Dichogaster bolaui (Michaelsen, 1891) the first domicole earthworm species? Eur J Soil Biol 44:198–201

    Article  Google Scholar 

  49. Cunha L, Campos I, Montiel R et al (2011) Morphometry of the epidermis of an invasive megascolecid earthworm (Amynthas gracilis, Kinberg 1867) inhabiting actively volcanic soils in the Azores archipelago. Ecotoxicol Environ Saf 74:25–32

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. Cunha L, Thornber A, Kille P et al (2017) A large set of microsatellites for the highly invasive earthworm Amynthas corticis predicted from low coverage genomes. Appl Soil Ecol 119:152–155

    Article  Google Scholar 

  51. Darwin C (1881) The formation of vegetable mould through the action of worms with some observations on their habits. John Murray, London

    Book  Google Scholar 

  52. Davalos A, Simpson E, Nuzzo V et al (2015) Non-consumptive effects of native deer on introduced earthworm abundance. Ecosystems 18:1029–1042

    Article  Google Scholar 

  53. Demetrio W, Assis O, Niva CC et al (2020) Comparison of soil invertebrate communities in organic and conventional production systems in Southern Brazil. Soil Org 92:143–156

    Google Scholar 

  54. Dobson A, Blossey B (2015) Earthworm invasion, white-tailed deer and seedling establishment in deciduous forests of north-eastern North America. J Ecol 103:153–164

    Article  Google Scholar 

  55. Dobson AM, Blossey B, Richardson JB (2017) Invasive earthworms change nutrient availability and uptake by forest understory plants. Plant Soil 421:175–190

    CAS  Article  Google Scholar 

  56. Eisenhauer N (2010) The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53:343–352

    Article  Google Scholar 

  57. Fahey TJ, Yavitt JB, Sherman RE, Maerz JC, Groffman PM, Fisk MC, Bohlen PJ (2013) Earthworms, litter and soil carbon in a northern hardwood forest. Biogeochemistry 114:269–280

    Article  Google Scholar 

  58. Ferlian O, Eisenhauer N, Aguirrebengoa M et al (2018) Invasive earthworms erode soil biodiversity: a meta-analysis. J Anim Ecol 87:162–172

    PubMed  Article  Google Scholar 

  59. Ferlian O, Thakur MP, Gonzalez AC et al (2020) Soil chemistry turned upside down: a meta-analysis of invasive earthworm effects on soil chemical properties. Ecology 101:12

    Article  Google Scholar 

  60. Ferreira T, Santos A, Demetrio WC et al (2018) Earthworm species in public parks in Curitiba, Parana, Brazil. Zootaxa 4496:535–547

    PubMed  Article  Google Scholar 

  61. Fragoso C, Brown GG (2007) Ecología y taxonomía de las lombrices de tierra en Latino-América: el primer Encuentro Latino-Americano de Ecología y Taxonomía de Oligoquetas (ELAETAO1). In: Brown GG and Fragoso C (eds) Minhocas na América Latina: biodiversidade e ecologia. Embrapa Soja, Londrina, pp 33–75

  62. Fragoso C, Rojas P (2014) Biodiversidad de lombrices de tierra (Annelida: Oligochaeta: Crassiclitellata) en México. Rev Mex Biodivers 85:S197–S207

    Article  Google Scholar 

  63. Frelich LE, Blossey B, Cameron EK et al (2019) Side-swiped: ecological cascades emanating from earthworm invasions. Front Ecol Environ 17:502–510

    PubMed  PubMed Central  Article  Google Scholar 

  64. Gao MX, Taylor MK, Callaham MA (2017) Trophic dynamics in a simple experimental ecosystem: Interactions among centipedes, Collembola and introduced earthworms. Soil Biol Biochem 115:66–72

    CAS  Article  Google Scholar 

  65. Garcia JA, Fragoso C (2002) Growth, reproduction and activity of earthworms in degraded and amended tropical open mined soils: laboratory assays. Appl Soil Ecol 20:43–56

    Article  Google Scholar 

  66. Gates GE (1956) Reproductive organ polymorphism in earthworms of the oriental megascolecine genus Pheretima Kinberg 1867. Evolution 10:213–227

    Google Scholar 

  67. Gates GE (1958) On some species of the oriental earthworm genus Pheretima Kinberg, 1867, with a key to species reported from the Americas. Am Mus Novit 1888:1–33

    Google Scholar 

  68. Gates GE (1972) Burmese earthworms—introduction to systematics and biology of megadrile oligochaetes with special reference to Southeast Asia. Trans Am Philos Soc 62:5–324

    Article  Google Scholar 

  69. Gates GE (1973) Contributions to North American earthworms (Annelida). No. 6: contributions to a revision of the earthworm family Glossoscolecidae. I. Pontoscolex corethrurus (Müller, 1857). Bull Tall Timbers Res Station 14:1–12

    Google Scholar 

  70. Gates GE (1982) Farewell to North American Megadriles. Megadrilogica 4:12–77

    Google Scholar 

  71. Görres JH, Melnichuk RDS (2012) Asian invasive earthworms of the genus Amynthas Kinberg in Vermont. Northeast Nat 19:313–322

    Article  Google Scholar 

  72. Görres J, Bellitürk K, Keller E (2014) Failure of an Amynthas agrestis (Goto & Hatai 1899) (Oligochaeta: Megascolecidae) population to expand its range within a sugar maple (Acer saccharum) stand. Megadrilogica 17:7–13

    Google Scholar 

  73. Görres JH, Bellitürk K, Melnichuk RDS (2016) Temperature and moisture variables affecting the earthworms of genus Amynthas Kinberg, 1867 (Oligachaeta: Megascolecidae) in a hardwood forest in the Champlain Valley, Vermont, USA. Appl Soil Ecol 104:111–115

    Article  Google Scholar 

  74. Görres JH, Connolly ST, Chang CH et al (2018) Winter hatching in New England populations of invasive pheretimoid earthworms Amynthas agrestis and Amynthas tokioensis: a limit on population growth, or aid in peripheral expansion? Biol Invasions 20:1651–1655

    Article  Google Scholar 

  75. Görres JH, Martin C, Nouri-Aiin M et al (2019) Physical properties of soils altered by invasive pheretimoid earthworms: does their casting layer create thermal refuges? Soil Syst 3:52

    Article  Google Scholar 

  76. Gorsuch JP, Owen PC (2014) Potential edaphic and aquatic predators of a nonindigenous Asian earthworm (Amynthas agrestis) in the Eastern United States. Northeast Nat 21:652–661

    Article  Google Scholar 

  77. Greiner HG, Kashian DR, Tiegs SD (2012) Impacts of invasive Asian (Amynthas hilgendorfi) and European (Lumbricus rubellus) earthworms in a North American temperate deciduous forest. Biol Invasions 14:2017–2027

    Article  Google Scholar 

  78. Griffith B, Turke M, Weisser WW et al (2013) Herbivore behavior in the anecic earthworm species Lumbricus terrestris L.? Eur J Soil Biol 55:62–65

    Article  Google Scholar 

  79. Gu JQ, Chen X, Wang YF, et al. (2020) Bioaccumulation, physiological distribution, and biotransformation of tetrabromobisphenol a (TBBPA) in the geophagous earthworm Metaphire guillelmi - hint for detoxification strategy. J Hazard Mater 388

  80. Hale CM, Frelich LE, Reich PB (2005) Exotic European earthworm invasion dynamics in northern hardwood forests of Minnesota, USA. Ecol Appl 15:848–860

    Article  Google Scholar 

  81. Hardy CR, Hardy NW (2018) Adapting traditional field activities in natural history education to an emerging paradigm in biodiversity informatics. Am Biol Teach 80:501–519

    Article  Google Scholar 

  82. Hasegawa M, Sugiura S, Ito MT et al (2009) Community structures of soil animals and survival of land snails on an island of the Ogasawara Archipelago. Pesqui Agropecuaria Bras 44:896–903

    Article  Google Scholar 

  83. Hendrix PF, Bohlen PJ (2002) Exotic earthworm invasions in North America: ecological and policy implications. Bioscience 52:801–811

    Article  Google Scholar 

  84. Hendrix PF, Baker GH, Callaham MA et al (2006) Invasion of exotic earthworms into ecosystems inhabited by native earthworms. Biol Invasions 8:1287–1300

    Article  Google Scholar 

  85. Hendrix PF, Callaham MA, Drake JM et al (2008) Pandora’s box contained bait: the global problem of introduced earthworms. Annu Rev Ecol Evol Syst 39:593–613

    Article  Google Scholar 

  86. Hickerson CAM, Anthony CD, Walton BM (2017) Eastern red-backed salamanders regulate top-down effects in a temperate forest-floor community. Herpetologica 73:180–189

    Article  Google Scholar 

  87. Holdsworth AR, Frelich LE, Reich PB (2007) Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests. Ecol Appl 17:1666–1677

    PubMed  Article  Google Scholar 

  88. Holmstrup M, Westh P (1994) Dehydration of earthworm cocoons exposed to cold—a novel cold-hardiness mechanism. J Comp Physiol B Biochem Syst Environ Physiol 164:312–315

    Article  Google Scholar 

  89. Houchins CS (1995) Artifacts of diplomacy: smithsonian collections from Commodore Matthew Perry's Japan expedition (1853–1854). Smithsonian Institution Press, Washington D.C.

  90. Ikeda H, Tsuchiya Y, Nagata N et al (2012) Altitudinal life-cycle and body-size variation in ground beetles of the genus Carabus (subgenus Ohomopterus) in relation to the temperature conditions and prey earthworms. Pedobiologia 55:67–73

    Article  Google Scholar 

  91. Ikeda H, Callaham MA, O’Brien JJ et al (2015) Can the invasive earthworm, Amynthas agrestis, be controlled with prescribed fire? Soil Biol Biochem 82:21–27

    CAS  Article  Google Scholar 

  92. Ikeda H, Fukumori K, Shoda-Kagaya E et al (2018) Evolution of a key trait greatly affects underground community assembly process through habitat adaptation in earthworms. Ecol Evol 8:1726–1735

    PubMed  PubMed Central  Article  Google Scholar 

  93. Imaizumi Y (1979) Hunting methods in relation to hunting situations in Japanese shrew-mole, Urotrichus talpoides. II: detection of the earthworm “head.” Annot Zool Jpn 52:212–224

    Google Scholar 

  94. Imaizumi Y (1983) Hunting of moles. In: Hidaka T (ed) Meanings of animal behaviors. Toukai Daigaku Shuppankai, Tokyo, Japan, pp 123–147

  95. Ishizuka K (2001) Taxonomic study of the genus Pheretima s. lat. (Oligochaeta, Megascolecidae) from Japan. Bull Seikei Univ 33:1–125

    Google Scholar 

  96. Ishizuka K, Minagoshi Y (2014) Pictorial book of earthworm. Zenkoku Noson Kyoiku Kyokai Co. Ltd., Tokyo

    Google Scholar 

  97. Johnston MR, Herrick BM (2019) Cocoon heat tolerance of pheretimoid earthworms Amynthas tokioensis and Amynthas agrestis. Am Midl Nat 181:299–309

    Article  Google Scholar 

  98. Jordan RC, Gray SA, Howe DV et al (2011) Knowledge gain and behavioral change in citizen-science programs. Conserv Biol 25:1148–1154

    PubMed  Article  Google Scholar 

  99. Kaneko N (2018) Soil ecology. Asakura Shoten, Tokyo (in Japanese)

    Google Scholar 

  100. Kaplan DL, Hartenstein R, Neuhauser EF (1980) Coprophagic relations among the earthworms Eisenia foetida, Eudrilus eugeniae and Amynthas spp. Pedobiologia 20:74–84

    Google Scholar 

  101. Keller EL, Görres JH, Schall JJ (2017) Genetic structure of two invasive earthworms, Amynthas agrestis and Amynthas tokioensis (Oligochaeta, Megascolecidae), and a molecular method for species identification. Megadrilogica 22:140–148

    Google Scholar 

  102. Kernecker M, Whalen JK, Bradley RL (2014) Litter controls earthworm-mediated carbon and nitrogen transformations in soil from temperate riparian buffers. Appl Environ Soil Sci 2014:329031

    Article  CAS  Google Scholar 

  103. Kobiyama M, Barcik C, Santos HR (1995) Influência da minhoca (Amynthas hawayanus) sobre a produção de matéria seca de Bracatinga (Mimosa scabrella Benth). Rev Setor Ciências Agrárias 13:199–203

    Google Scholar 

  104. Laricchia KM, Johnson MG, Ragone D et al (2018) A transcriptome screen for positive selection in domesticated breadfruit and its wild relatives (Artocarpus spp.). Am J Bot 105:915–926

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. Laushman KM, Hotchkiss SC, Herrick BM (2018) Tracking an invasion: community changes in hardwood forests following the arrival of Amynthas agrestis and Amynthas tokioensis in Wisconsin. Biol Invasions 20:1671–1685

    Article  Google Scholar 

  106. Loss SR, Blair RB (2011) Reduced density and nest survival of ground-nesting songbirds relative to earthworm invasions in northern hardwood forests. Conserv Biol 25:983–992

    PubMed  Article  PubMed Central  Google Scholar 

  107. Loss SR, Niemi GJ, Blair RB (2012) Invasions of non-native earthworms related to population declines of ground-nesting songbirds across a regional extent in northern hardwood forests of North America. Landsc Ecol 27:683–696

    Article  Google Scholar 

  108. Lubbers IM, van Groenigen KJ, Fonte SJ et al (2013) Greenhouse-gas emissions from soils increased by earthworms. Nat Clim Change 3:187–194

    CAS  Article  Google Scholar 

  109. Lubbers IM, Pulleman MM, Van Groenigen JW (2017) Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biol Biochem 105:12–24

    CAS  Article  Google Scholar 

  110. Lucky A, Savage AM, Nichols LM et al (2014) Ecologists, educators, and writers collaborate with the public to assess backyard diversity in The School of Ants Project. Ecosphere 5:78

    Article  Google Scholar 

  111. Ma YN, Filley TR, Szlavecz K et al (2014) Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages. Soil Biol Biochem 69:212–222

    CAS  Article  Google Scholar 

  112. Maschio W, Vezzani FM, Brown GG (2014) Earthworm populations in Eucalyptus spp. plantations at Embrapa Forestry, Brazil (Oligochaeta). Proceedings of the 6th International Oligochaeta Taxonomy Meeting (6th IOTM). Heidelberg: Kasparek Verlag, Palmeira de Faro, pp 114–126

  113. McCay TS, Scull P (2019) Invasive lumbricid earthworms in northeastern North American forests and consequences for leaf-litter fauna. Biol Invasions 21:2081–2093

    Article  Google Scholar 

  114. McCay TS, Brown G, Callaham M et al (2020) Tools for monitoring and study of peregrine pheretimoid earthworms (Megascolecidae). Pedobiologia 83:150669. https://doi.org/10.1016/j.pedobi.2020.150669

    Article  Google Scholar 

  115. McMahon SM, Parker GG, Miller DR (2010) Evidence for a recent increase in forest growth. Proc Natl Acad Sci USA 107:3611–3615

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. Medina-Sauza RM, Alvarez-Jimenez M, Delhal A et al (2019) Earthworms building up soil microbiota, a review. Front Environ Sci 7:81

    Article  Google Scholar 

  117. Melnichuk R (2016) Earthworms in Vermont forest soils: a study of nutrient, carbon, nitrogen and native plant responses. (PhD Thesis) University of Vermont, Vermont, USA

  118. Minamiya Y, Tamura F, Maruyama K et al (2009) On the earthworm fauna of main campus and adjunctive faculties of Nara University of Education, Nara prefecture, central Japan. Bull Center Nat Environ Educ 9:1–4

    Google Scholar 

  119. Minamiya Y, Tamura F, Torii H et al (2010) On the megadrile earthworm fauna of Kinki district, central Japan. Bull Kansai Org Nat Conserv 32:113–125

    Google Scholar 

  120. Minamiya Y, Hayakawa H, Ohga K et al (2011) Variability of sexual organ possession rates and phylogenetic analyses of a parthenogenetic Japanese earthworm, Amynthas vittatus (Oligochaeta: Megascolecidae). Genes Genet Syst 86:27–35

    PubMed  Article  Google Scholar 

  121. Minamiya Y, Niwa S, Honma K et al (2013) Earthworm fauna of Sado Island compared to those of mainland Niigata Prefecture. Bull Saitama Mus Nat Hist 1:67–78

    Google Scholar 

  122. Minamiya Y, Ikeda H, Kaneko N (2015) Earthworm fauna of Aomori Prefecture, northern Japan. J Aomori Prefect Hist 20:81–90

    Google Scholar 

  123. Moore JD, Ouimet R, Bohlen PJ (2013) Effects of liming on survival and reproduction of two potentially invasive earthworm species in a northern forest Podzol. Soil Biol Biochem 64:174–180

    CAS  Article  Google Scholar 

  124. Moore JD, Görres JH, Reynolds JW (2018) Exotic Asian pheretimoid earthworms (Amynthas spp., Metaphire spp.): Potential for colonisation of south-eastern Canada and effects on forest ecosystems. Environ Rev 26:113–120

    Article  Google Scholar 

  125. Nakamura M (1994) Earthworms (Annelida: Oligochaeta) of Ogasawara Archipelagos. Chuo Daigaku Ronshu 15:21–32

    Google Scholar 

  126. Nakamura M (1997) Ecological study of earthworms in Galapagos archipelago. Chuo Daigakku Occas Pap 18:1–12

    Google Scholar 

  127. Nelson JC (1917) The introduction of foreign weeds in ballast as illustrated by ballast-plants at Linnton. Oregon Torreya 17(9):151–160

    Google Scholar 

  128. Nguyen VT, Tran VG, Nguyen TT et al (2018) Genetic diversity of earthworm Amynthas rodericensis (Grube, 1879) (Clitellata: Megascolecidae) in Vietnam by randomly amplified polymorphic DNA analysis. J Chem Biol Phys Sci 8:870–883

    Google Scholar 

  129. Nouri-Aiin M, Görres JH (2019) Earthworm cocoons: the cryptic side of invasive earthworm populations. Appl Soil Ecol 141:54–60

    Article  Google Scholar 

  130. Nouri-Aiin M, Schall JJ, Keough CA, Wen Y, Görres JH (2021) Identifying the unidentifiable: a PCR multiplex protocol for the diagnosis of invasive pheretimoid earthworm species, verified by morphological and barcode identification. Appl Soil Ecol 161:103822. https://doi.org/10.1016/j.apsoil.2020.103822

    Article  Google Scholar 

  131. Novo M, Cunha L, Maceda-Veiga A et al (2015) Multiple introductions and environmental factors affecting the establishment of invasive species on a volcanic island. Soil Biol Biochem 85:89–100

    CAS  Article  Google Scholar 

  132. Nuzzo VA, Maerz JC, Blossey B (2009) Earthworm invasion as the driving force behind plant invasion and community change in northeastern North American forests. Conserv Biol 23:966–974

    PubMed  Article  Google Scholar 

  133. Nuzzo V, Davalos A, Blossey B (2015) Invasive earthworms shape forest seed bank composition. Divers Distrib 21:560–570

    Article  Google Scholar 

  134. O’Keefe K, McCulloh KA (2021) Do invasive jumping worms impact sugar maple (Acer saccharum) water-use dynamics in a Central Hardwoods forest? Biol Invasions 23:129–141

    Article  Google Scholar 

  135. Okuzaki Y, Sota T (2018) Predator size divergence depends on community context. Ecol Lett 21:1097–1107

    PubMed  Article  Google Scholar 

  136. Paudel S, Longcore T, MacDonald B et al (2016) Belowground interactions with aboveground consequences: invasive earthworms and arbuscular mycorrhizal fungi. Ecology 97:605–614

    PubMed  Article  Google Scholar 

  137. Peixoto RT, Marochi AI (1996) A influência da minhoca Pheretima sp. nas propriedades de um latossolo vermelho escuro álico e no desenvolvimento de culturas em sistema de plantio direto, em Arapoti-PR. Plantio Direto 35:23–25

    Google Scholar 

  138. Pelosi C, Bertrand M, Makowski D et al (2008) WORMDYN: a model of Lumbricus terrestris population dynamics in agricultural fields. Ecol Model 218:219–234

    Article  Google Scholar 

  139. Perez-Losada M, Eiroa J, Mato S, Dominguez J (2005) Phylogenetic species delimitation of the earthworms Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouche, 1972 (Oligochaeta, Lumbricidae) based on mitochondrial and nuclear DNA sequences. Pedobiologia 49:317–324

    CAS  Article  Google Scholar 

  140. Perrier E (1872) Recherches pour server a l’histoire des lombriciens terrestres. Nouvelles Arch Mus D’hist Nat Paris 8:5–198

    Google Scholar 

  141. Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  142. Pinder RA (2013) Ecology of earthworms in riparian habitats. University at Albany, New York

    Google Scholar 

  143. Pinder RA, Robinson GR (2019) Niche-structured assemblages of exotic earthworms in headwater streambanks in eastern New York State, USA. Pedobiologia 75:15–23

    Article  Google Scholar 

  144. Porco D, Decaens T, Deharveng L et al (2013) Biological invasions in soil: DNA barcoding as a monitoring tool in a multiple taxa survey targeting European earthworms and springtails in North America. Biol Invasions 15:899–910

    Article  Google Scholar 

  145. Price-Christenson GJ, Johnston MR, Herrick BM et al (2020) Influence of invasive earthworms (Amynthas spp) on Wisconsin forest soil microbial communities and soil chemistry. Soil Biol Biochem 149:107955. https://doi.org/10.1016/j.soilbio.2020.107955

    CAS  Article  Google Scholar 

  146. Prudic KL, Oliver JC, Brown BV et al (2018) Comparisons of citizen science data-gathering approaches to evaluate urban butterfly diversity. Insects 9(4):186

    PubMed Central  Article  PubMed  Google Scholar 

  147. Qiu JX, Turner MG (2017) Effects of non-native Asian earthworm invasion on temperate forest and prairie soils in the Midwestern US. Biol Invasions 19:73–88

    Article  Google Scholar 

  148. Ransom TS (2012) Comparison of direct, indirect, and ecosystem engineering effects of an earthworm on the red-backed salamander. Ecology 93:2198–2207

    PubMed  Article  Google Scholar 

  149. Redmond CT, Saeed A, Potter DA (2016) Seasonal biology of the invasive green stinkworm Amynthas hupeiensis and control of its casts on golf putting greens. Crop Forage Turfgrass MANAG 2:1–9

    Article  Google Scholar 

  150. Resner K, Yoo K, Sebestyen SD et al (2015) Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest. Ecosystems 18:89–102

    CAS  Article  Google Scholar 

  151. Reynolds JW (2018) First earthworm (Annelida: Oligochaeta) species’ collections in Canada and the continental United States. Megadrilogica 23:1–50

    Google Scholar 

  152. Richardson DR, Snyder BA, Hendrix PF (2009) Soil moisture and temperature: tolerances and optima for a non-native earthworm species, Amynthas agrestis (Oligochaeta: Opisthopora: Megascolecidae). Southeast Nat 8:325–334

    Article  Google Scholar 

  153. Richardson JB (2019) Trace elements in surface soils and megascolecidae earthworms in urban forests within four land-uses around Poughkeepsie, New York, USA. Bull Environ Contam Toxicol 103:385–390

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. Richardson JB, Görres JH, Jackson BP et al (2015) Trace metals and metalloids in forest soils and exotic earthworms in northern New England, USA. Soil Biol Biochem 85:190–198

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. Richardson JB, Renock DJ, Görres JH et al (2016) Nutrient and pollutant metals within earthworm residues are immobilized in soil during decomposition. Soil Biol Biochem 101:217–225

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. Rimmington OJ (2018) The mechanisms of evolutionary flexibility in earthworm genomes. (Ph.D. Thesis) Cardiff University, Cardiff, UK.

  157. Rougerie R, Decaens T, Deharveng L et al (2009) DNA barcodes for soil animal taxonomy. Pesqui Agropecuaria Bras 44:789–802

    Article  Google Scholar 

  158. Sackett TE, Smith SM, Basiliko N (2012) Exotic earthworm distribution in a mixed-use northern temperate forest region: influence of disturbance type, development age, and soils. Can J for Res Revue Can Rech for 42:375–381

    Article  Google Scholar 

  159. Schmidt O (1999) Intrapopulation variation in carbon and nitrogen stable isotope ratios in the earthworm Aporrectodea longa. Ecol Res 14:317–328

    Article  Google Scholar 

  160. Schult N, Pittenger K, Davalos S et al (2016) Phylogeographic analysis of invasive Asian earthworms (Amynthas) in the northeast United States. Invertebr Biol 135:314–327

    Article  Google Scholar 

  161. Schwert DP, Dance KW (1979) Earthworm cocoons as a drift component in a southern Ontario stream. Can Field Nat 93:180–183

    Google Scholar 

  162. Scyphers SB, Powers SP, Akins JL et al (2015) The role of citizens in detecting and responding to a rapid marine invasion. Conserv Lett 8:242–250

    Article  Google Scholar 

  163. Shartell LM, Lilleskov EA, Storer AJ (2013) Predicting exotic earthworm distribution in the northern Great Lakes region. Biol Invasions 15:1665–1675

    Article  Google Scholar 

  164. Shen HP, Tsai CF, Fang YP et al (2011) Parthenogenesis, polyploidy and reproductive seasonality in the Taiwanese mountain earthworm Amynthas catenus Tsai et al., 2001 (Oligochaeta, Megascolecidae). Pedobiologia 54:133–139

    Article  Google Scholar 

  165. Sherlock E, Carpenter D (2009) An updated earthworm list for the British Isles and two new “exotic” species to Britain from Kew Gardens. Eur J Soil Biol 45:431–435

    Article  Google Scholar 

  166. Sims RW, Gerard BM (1999) Earthworms: Synopses of the British fauna (new series). Linnean Society of London, London

    Google Scholar 

  167. Sizmur T, Hodson ME (2009) Do earthworms impact metal mobility and availability in soil? A review. Environ Pollut 157:1981–1989

    CAS  PubMed  Article  Google Scholar 

  168. Sizmur T, Richardson J (2020) Earthworms accelerate the biogeochemical cycling of potentially toxic elements: Results of a meta-analysis. Soil Biol Biochem 148:107865. https://doi.org/10.1016/j.soilbio.2020.107865

    CAS  Article  Google Scholar 

  169. Sizmur T, Tilston EL, Charnock J et al (2011) Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability. J Environ Monit 13:266–273

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  170. Sluys R (2016) Invasion of the flatworms. Am Sci 104:288–295

    Article  Google Scholar 

  171. Snyder BA, Hendrix PF (2008) Current and potential roles of soil macroinvertebrates (earthworms, millipedes, and isopods) in ecological restoration. Restor Ecol 16:629–636

    Article  Google Scholar 

  172. Snyder BA, Boots B, Hendrix PF (2009) Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native North American millipedes (Pseudopolydesmus erasus, Polydesmidae): effects on carbon cycling and soil structure. Soil Biol Biochem 41:1442–1449

    CAS  Article  Google Scholar 

  173. Snyder BA, Callaham MA, Hendrix PF (2011) Spatial variability of an invasive earthworm (Amynthas agrestis) population and potential impacts on soil characteristics and millipedes in the Great Smoky Mountains National Park, USA. Biol Invasions 13:349–358

    Article  Google Scholar 

  174. Snyder BA, Callaham MA, Lowe CN et al (2013) Earthworm invasion in North America: food resource competition affects native millipede survival and invasive earthworm reproduction. Soil Biol Biochem 57:212–216

    CAS  Article  Google Scholar 

  175. Speratti AB, Whalen JK (2008) Carbon dioxide and nitrous oxide fluxes from soil as influenced by anecic and endogeic earthworms. Appl Soil Ecol 38:27–33

    Article  Google Scholar 

  176. Steinberg DA, Pouyat RV, Parmelee RW et al (1997) Earthworm abundance and nitrogen mineralization rates along an urban-rural land use gradient. Soil Biol Biochem 29:427–430

    CAS  Article  Google Scholar 

  177. Stokes AN, Ducey PK, Neuman-Lee L et al (2014) Confirmation and distribution of tetrodotoxin for the first time in terrestrial invertebrates: two terrestrial flatworm species (Bipalium adventitium and Bipalium kewense). PLoS ONE 9:e100718

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  178. Szlavecz K, Chang CH, Burgess JL et al (2014) Earthworms (Annelida: Clitellata) of Plummers Island, Maryland, USA, with description of a new species. Proc Biol Soc Wash 126:312–322

    Article  Google Scholar 

  179. Szlavecz K, Chang CH, Bernard MJ et al (2018) Litter quality, dispersal and invasion drive earthworm community dynamics and forest soil development. Oecologia 188:237–250

    PubMed  Article  Google Scholar 

  180. Taheri S, Pelosi C, Dupont L (2018) Harmful or useful? A case study of the exotic peregrine earthworm morphospecies Pontoscolex corethrurus. Soil Biol Biochem 116:277–289

    CAS  Article  Google Scholar 

  181. Uchida T, Kaneko N (2004) Life history of Megascolecidae earthworms in forest soils at Kanagawa, Japan. Edaphologia 74:35–45

    Google Scholar 

  182. Ueno Y (1999) The first breeding record of the fairy pitta Pitta brachyura from Chugoku District, Honshu, Japan. Jpn J Ornithol 47:139–141

    Article  Google Scholar 

  183. Walton BM (2013) Top-down regulation of litter invertebrates by a terrestrial salamander. Herpetologica 69:127–146

    Article  Google Scholar 

  184. Wang K, Qiao YH, Zhang HQ et al (2018) Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. Ecotoxicol Environ Saf 148:876–883

    CAS  Article  Google Scholar 

  185. Waqar A, Shah GM, Bakhat HF et al (2019) The earthworm species Pheretima hawayana influences organic wastes decomposition, nitrogen mineralization and maize N recovery. Eur J Soil Biol 90:1–8

    CAS  Article  Google Scholar 

  186. Wyman RL (1998) Experimental assessment of salamanders as predators of detrital food webs: effects on invertebrates, decomposition and the carbon cycle. Biodivers Conserv 7:641–650

    Article  Google Scholar 

  187. Yesilonis I, Szlavecz K, Pouyat R et al (2016) Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. For Ecol Manag 370:83–92

    Article  Google Scholar 

  188. Zhang LL, Sechi P, Yuan ML et al (2016) Fifteen new earthworm mitogenomes shed new light on phylogeny within the Pheretima complex. Sci Rep 6:20096

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. Zhang WX, Hendrix PF, Snyder BA et al (2010) Dietary flexibility aids Asian earthworm invasion in North American forests. Ecology 91:2070–2079

    PubMed  Article  PubMed Central  Google Scholar 

  190. Zicsi A, Szlavecz K, Csuzdi C (2011) Leaf litter acceptance and cast deposition by peregrine and endemic European lumbricids (Oligochaeta: Lumbricidae). Pedobiologia 54:S145–S152

    Article  Google Scholar 

  191. Ziemba JL, Cameron AC, Peterson K et al (2015) Invasive Asian earthworms of the genus Amynthas alter microhabitat use by terrestrial salamanders. Can J Zool 93:805–811

    Article  Google Scholar 

  192. Ziemba JL, Hickerson CAM, Anthony CD (2016) Invasive Asian earthworms negatively impact keystone terrestrial salamanders. PLoS ONE 11:e0151591

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  193. Ziter C, Turner MG (2019) No evidence of co-facilitation between a non-native Asian earthworm (Amynthas tokioensis) and invasive common buckthorn (Rhamnus cathartica) in experimental mesocosms. Biol Invasions 21:111–122

    Article  Google Scholar 

  194. Ziter C, Herrick BM, Johnston MR et al (2021) Ready, set, go: Community science field campaign reveals habitat preferences of nonnative Asian earthworms in an urban landscape. Bioscience 71:280–291

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate two anonymous reviewers for their constructive comments on an earlier version of this article. This review was conceptualized during the symposium “Diversity and Ecology of Invasive Megascolecid Earthworms”' supported by the Picker Interdisciplinary Science Institute at Colgate University, USA.

Funding

C.-H. Chang was supported by the Ministry of Science and Technology (MOST108-2621-B-002-001-MY3) and the Ministry of Education, Taiwan (Yushan Scholar Program); K. Szlavecz, the National Science Foundation (DEB-1855277); G. Brown, the Brazilian National Council for Scientific and Technological Development (310690/2017-0 and 404191/2019-3); J. Görres and M. Nouri-Aiin, a Hatch Grant (SAES—UVM Accession No. 1018366) and the Eppley Foundation for Research; T. McCay and D. McHugh, the Picker Interdisciplinary Science Institute at Colgate University, USA; M. Novo, a Ramón y Cajal Fellowship (RYC2018-024654-I) from the Spanish Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chih-Han Chang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 103 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, CH., Bartz, M.L.C., Brown, G. et al. The second wave of earthworm invasions in North America: biology, environmental impacts, management and control of invasive jumping worms. Biol Invasions 23, 3291–3322 (2021). https://doi.org/10.1007/s10530-021-02598-1

Download citation

Keywords

  • Jumping worms
  • Amynthas agrestis
  • Amynthas tokioensis
  • Metaphire hilgendorfi
  • Pheretimoid
  • Earthworm invasion