Skip to main content
Log in

Non-native weed reaches community dominance under the canopy of dominant native tree

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Whether facilitation from native plants is strong enough to trigger community dominance by non-natives remains unclear. We explored the possibility that facilitation from Prosopis caldenia, the dominant native tree in the semiarid open forest of central Argentina, drives local community dominance by Chenopodium album, an annual herb native to Europe. We assessed this hypothesis by conducting extensive field sampling in which we recorded the relative abundance of species growing under the canopy of P. caldenia (caldén microsites) and in adjacent locations free of this tree (open microsites). If our hypothesis is correct, then the relative abundance of C. album will be greater than that of the rest of the species only when growing under P. caldenia. Also, we measured C. album performance, estimated its soil seed bank, and characterized growing conditions in caldén and open microsites. We found that the relative abundance of C. album was over seven times greater than that of any other species in communities occurring in caldén microsites; by contrast, C. album co-dominated communities with several other species in the open. Chenopodium album density, cover, biomass, and fecundity were all several times greater in caldén than open microsites. Similarly, C. album seed bank displayed an eight-fold increase in caldén as compared to open microsites. Growing conditions were markedly different between microsites, which could explain positive responses from C. album. Our results suggest that facilitation from natives is indeed strong enough to trigger local community dominance by non-natives, advancing the understanding of community-level consequences of this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study will be available in the dryad repository upon the acceptance of this manuscript.

References

  • Abatzoglou JT, Kolden CA (2011) Climate change in western US deserts: potential for increased wildfire and invasive annual grasses. Range Ecol Manag 64:471–478

    Article  Google Scholar 

  • Abella SR, Chiquione LP (2018) The good with the bad: when ecological restoration facilitates native and non-native species. Res Ecol 27:343–351

    Article  Google Scholar 

  • Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104

    Article  PubMed  Google Scholar 

  • Alba C, Skalova H, McGregor KF, D’Antonio C, Pysek P (2015) Native and exotic plant species respond differently to wildfire and prescribed fire as revealed by meta-analysis. J Veg Sci 26:102–113

    Article  Google Scholar 

  • Archer S, Predick KI (2008) Climate change and ecosystems of the Southwestern United States. Rangelands 6:23–28

    Article  Google Scholar 

  • Badano EI, Villarroel E, Bustamante RO, Marquet PA, Cavieres LA (2007) Ecosystem engineering facilitates invasions by exotic plants in high-Andean ecosystems. J Ecol 95:682–688

    Article  Google Scholar 

  • Badano EI, Bustamante RO, Villarroel E, Marquet PA, Cavieres LA (2015) Facilitation by nurse plants regulates community invasibility in harsh environments. J Veg Sci 26:756–767

    Article  Google Scholar 

  • Benet-Pierce N, Simpson MG (2014) The taxonomy of Chenopodium dessicatum and C. nitens, sp. Nov J Torrey Bot Soc 1411:161–172

    Article  Google Scholar 

  • Bertness MD, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness M (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Bulleri F, Benedetti-Cecchi L (2008) Facilitation of the introduced green alga Caulerpa racemosa by resident algal turfs: experimental evaluation of underlying mechanisms. Mar Eol Progr Ser 364:77–86

    Article  Google Scholar 

  • Bulleri F, Bruni JF, Benedetti-Cecchi L (2008) Beyond competition: incorporating positive interactions between species to predict ecosystem invasibility. PLoS Biol 6:1136–1140

    Article  CAS  Google Scholar 

  • Bulleri F, Tamburello L, Benedetti-Cecchi L (2009) Loss of consumers alters the effects of resident assemblages on the local spread of an introduced macroalga. Oikos 118:269–279

    Article  Google Scholar 

  • Bulleri F, Bruno JF, Silliman BR, Stachowicz, (2016) Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct Ecol 30:70–78

    Article  Google Scholar 

  • Cabrera AL (1994) Regiones fitogeográficas argentinas, Primera, re. Acme, Buenos Aires

    Google Scholar 

  • Callaway RM, Nadkarni N, Mahall BE (1991) Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology 72:1484–2149

    Article  Google Scholar 

  • Callaway RM, Kikvidze Z, Kikodze D (2000) Facilitation by unpalatable weed may conserve plant diversity in overgrazed meadows in the Caucasus Mountains. Oikos 89:275–282

    Article  Google Scholar 

  • Callaway RM, Kikodze D, Chiboshvili M et al (2005) Unpalatable plants protect neighbors from grazing and increase plant community diversity. Ecology 86:1856–1862

    Article  Google Scholar 

  • Campos CM, Campos VE, Mongeaud A, Borghi CE, De los Ríos C, Gianonni SM, (2011) Relationships between Prosopis flexuosa (Fabaceae) and cattle in the Monte desert: Seeds, seedlings and saplings on cattle-use site classes. Rev Chil Hist Nat 84:289–299

    Article  Google Scholar 

  • Cano E, Fernandez B, Montes M (1980) Inventario Integrado de los Recursos Naturales de la Provincia de La Pampa. Clima, Geomorfología, Suelo y Vegetación (in Spanish)

    Google Scholar 

  • Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191

    Article  Google Scholar 

  • Cavieres LA, Quiroz CL, Molina-Montenegro MA, Muñoz AA, Pauchard A (2005) Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Pers Plant Ecol Evol Syst 7:217–226

    Article  Google Scholar 

  • Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arc Ant Alp Res 39:229–236

    Article  Google Scholar 

  • Cavieres LA, Quiroz CL, Molina-Montenegro MA (2008) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central hile: are there differences between nurses? Funct Ecol 22:148–156

    Google Scholar 

  • Cavieres LA, Brooker RW, Butterfield BJ et al (2014) Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol Lett 17:193–202

    Article  PubMed  Google Scholar 

  • Caviglia JA, Lorda HO, Lemes JD (2010) Caracterización de las unidades de producción agropecuarias en la provincia de La Pampa, vol. 99 Ediciones INTA (in Spanish)

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Chiuffo MC, MacDougall A, Hierro JL (2015) Native and nonnative ruderals experience similar plant–soil feedbacks and neighbor effects in a system where they coexist. Oecologia 179:843–852

    Article  PubMed  Google Scholar 

  • Chiuffo MC, Cock MC, Prina AO, Hierro JL (2018) Response of native and nonnative ruderals to natural and human disturbance. Biol Invasions 20:2915–2925

    Article  Google Scholar 

  • Cock MC, Hierro JL (2020a) Native weed protects species that sustain cattle raising in semi-arid natural grasslands. J Arid Environ 175:104088

    Article  Google Scholar 

  • Cock MC, Hierro JL (2020b) Plant interactions balance under biotic and abiotic stressors: the importance of herbivory in semi-arid ecosystems. Oecologia 194:685–694

    Article  PubMed  Google Scholar 

  • Collins M, Knutti R, Arblaster J et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, et al (eds), Climate change 2013—the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change pp 1029–1136. (Intergovernmental Panel on Climate Change). Cambridge University Press

  • Cushman JH, Lortie CJ, Christian CE (2011) Native herbivores and plant facilitation mediate the performance and distribution of an invasive exotic grass. J Ecol 99:524–531

    Google Scholar 

  • D’Antonio CM, Dudley TL, Mack M (1999) Disturbance and biological invasions: direct effects and feedbacks. In: Walker LR (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 413–452

    Google Scholar 

  • Ernst RD, Morici E, Estelrich HD, Muiño WA, Ruiz MA (2015) Efecto de la quema controlada sobre el banco de semillas de gramíneas en diferentes parches del bosque de caldén en la región semiárida central Argentina. Arch Zootec 64:245–254 ((in Spanish))

    Article  Google Scholar 

  • Fernández OA, Leguizamón ES, Acciaresi HA, Troiani HO, Villamil CB (2016) Malezas e invasoras de la Argentina. Tomo II: descripción y reconocimiento, 1st edn. Universidad Nacional del Sur, Bahía Blanca (in Spanish)

  • Gallien L, Carboni M (2017) The community ecology of invasive species: where are we and what’s next? Ecography 40:335–352

    Article  Google Scholar 

  • Gioria M, Pysek P (2016) The legacy of plant invasions: changes in the soil seed bank of invaded plant communities. Bioscience 66:40–53

    Article  Google Scholar 

  • Gómez Aparicio L, Gómez JM, Zamora R, Boettinger JL (2005) Canopy versus soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. J Veg Sci 16:191–198

    Article  Google Scholar 

  • Griffith AB (2010) Positive effects of native shrubs on Bromus tectorum demography. Ecology 91:141–154

    Article  PubMed  Google Scholar 

  • Groom MJ, Meffe GK, Carroll CR (2006) Principles of conservation biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Gurevitch J, Scheiner SM, Fox GA (2020) The ecology of plants, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706

    Article  PubMed  Google Scholar 

  • Hierro JL, Cock MC (2013) Herbivore-mediated facilitation alters composition and increases richness and diversity in ruderal communities. Plant Ecol 214:1287–1297

    Article  Google Scholar 

  • Hierro JL, Villarreal D, Eren Ö, Graham J, Callaway RM (2006) Disturbance facilitates invasions: the effects are stronger abroad than at home. Am Nat 168:144–156

    Article  PubMed  Google Scholar 

  • Hierro JL, Lortie CJ, Villarreal D, Estanga-Mollica ME, Callaway RM (2011) Resistance to Centaurea solstitialis from annual and perennial grasses in California and Argentina. Biol Invasions 13:2249–2259

    Article  Google Scholar 

  • Hierro JL, Khetsuriani L, Andonian K, Eren Ö, Villarreal D, Janoian G, Callaway RM (2017) The importance of factors controlling species abundance and distribution varies in native and non-native ranges. Ecography 40:991–1002

    Article  Google Scholar 

  • HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 43:227–248

    Article  Google Scholar 

  • Huang F, Lankau R, Peng S (2018) Coexistence via coevolution driven by reduced allelochemical effects and increased tolerance to competition between invasive and native plants. New Phytol 218:357–369

    Article  PubMed  Google Scholar 

  • Hunter AF, Aarssen LW (1988) Plants helping plants. Bioscience 38:34–40

    Article  Google Scholar 

  • Hupp N, Llambi LD, Ramírez L, Callaway RM (2017) Alpine cushion plants have species-specific effects on microhabitat and community structure in the tropical Andes. J Veg Sci 28:928–938

    Article  Google Scholar 

  • Iponga DM, Milton SJ, Richardson DM (2009) Soil type, microsite, and herbivory influence growth and survival of Schinus molje (Peruvian pepper tree) invading semi-arid African savanna. Biol Invasions 11:159–169

    Article  Google Scholar 

  • Jauni M, Gripenberg S, Ramula S (2015) Non-native plant species benefit from disturbance: a meta-analysis. Oikos 124:122–129

    Article  Google Scholar 

  • Jeschke JM, Gómez Aparicio L, Haider S, Heger T, Lortie CJ, Pysek P, Strayer D (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Klironomos JK (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Kuebbing SE, Nuñez MA (2016) Invasive non-native plants have a greater effect on neighboring natives than other non-natives. Nature Plants 1–7

  • Lenz TI, Facelli JM (2003) Shade facilitates an invasive stem succulent in a chenopod shrubland in South Australia. Austral Ecol 28:480–490

    Article  Google Scholar 

  • Llorens EM (2013) Caracterización y manejo de los pastizales del centro de La Pampa. Ministerio de la Producción, Gobierno de La Pampa, p 52

    Google Scholar 

  • Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. Oikos 107:433–438

    Article  Google Scholar 

  • Lozano YM, Hortal S, Armas C, Pugnaire FI (2020) Complementarity in nurse plant systems: soil drives community composition while microclimate enhances productivity and diversity. Plant Soil 450:385–396

    Article  CAS  Google Scholar 

  • Lucero JE, Noble T, Haas S, Westphal M, Butterfield HS, Lortie CJ (2019) The dark side of facilitation: native shrubs facilitate exotic annuals more strongly than native annuals. NeoBiota 44:75–93

    Article  Google Scholar 

  • Lucero JE, Seifan M, Callaway RM, Lortie CJ (2020) Positive associations with native shrubs are intense and important for an exotic invader but not the native annual community across an aridity gradient. Div Distr. https://doi.org/10.1111/ddi.13111

    Article  Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615

    Article  Google Scholar 

  • MacDougall AS, Rillig MC, Klironomos JN (2011) Weak conspecific feedbacks and exotic dominance in a species-rich savanna. Proc R Soc B 278:2939–2945

    Article  PubMed  PubMed Central  Google Scholar 

  • Magurran AE, Hendriks PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716

    Article  CAS  PubMed  Google Scholar 

  • Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105:302–312

    Article  PubMed  Google Scholar 

  • Maron JL, Pearson DE, Potter T, Ortega YK (2012) Seed size and provenance mediate the joint effects of disturbance and seed predation on community assembly. J Ecol 100:1492–1500

    Article  Google Scholar 

  • Mazzolari AC, Hierro JL, Vázquez DP (2020) Analysis of an invasion in the community context: differences and similarities between native and non-native shrubs. Plant Ecol 221:83–89

    Article  Google Scholar 

  • McIntire EJB, Fajardo A (2014) Facilitation as a ubiquitous driver of biodiversity. New Phytol 201:403–416

    Article  PubMed  Google Scholar 

  • Moles AT et al (2012) Invasions: the trail behind, the path ahead, and a test of a disturbing idea. J Ecol 100:116–127

    Article  Google Scholar 

  • Morici E, Ernst T, Kin AG, Estelrich D, Mazzola M, Poey S (2003) Efecto del pastoreo en un pastizal semiárido de Argentina según la distancia a la aguada. Arch Zootec 52:59–66 ((in Spanish))

    Google Scholar 

  • Morici E, Doménech García V, Gómez Castro G, Kin AG, Saenz AM, Rabotnikof CM (2009) Diferencias estructurales entre parches de pastizal del caldenal y su influencia sobre el banco de semillas, en la provincia de La Pampa, Argentina. Agrociencia 43:529–537 ((in Spanish))

    Google Scholar 

  • Navie SC, Panetta FD, McFadyen RE, Adkins SW (2004) Germinable soil seedbanks of central Queensland rangelands invaded by the exotic weed Parthenium hysterophorus L. Weed Biol Manag 4:154–167

    Article  Google Scholar 

  • Norris S (2003) Neutral theory: a new, unified model for ecology. Bioscience 53:124–129

    Article  Google Scholar 

  • Oyarzabal et al (2018) Unidades de vegetación de la Argentina. Ecol Aus 28:40–63 ((in Spanish))

    Article  Google Scholar 

  • Pearson DE, Hierro JL, Chiuffo MC, Villarreal D (2014a) Rodent seed predation as a biotic filter influencing exotic plant abundance and distribution. Biol Invasions 16:1185–1196

    Article  Google Scholar 

  • Pearson DE, Ortega YK, Eren Ö, Hierro JL (2018a) Community assembly theory as a conceptual framework for invasions. Trends Ecol Evol 33:313–325

    Article  PubMed  Google Scholar 

  • Pearson DE, Ortega YK, Villarreal D et al (2018b) The fluctuating resource hypothesis explains vulnerability, but not exotic advantage following disturbance. Ecology 99:1296–1305

    Article  PubMed  Google Scholar 

  • Perkins LB, Nowak RS (2013) Native and non-native grasses generate common types of plant–soil feedbacks by altering soil nutrients and microbial communities. Oikos 122:199–208

    Article  Google Scholar 

  • Preston FW (1948) The commonness, and rarity, of species. Ecology 29:254–283

    Article  Google Scholar 

  • Ramírez L, Rada F, Llambí LD (2015) Linking patterns and processes through ecosystem engineering: effects of shrubs on microhabitat and water status of associated plants in the high tropical Andes. Plant Ecol 216:213–225

    Article  Google Scholar 

  • Rebollo S, Milchunas DG, Noy-Meir I et al (2002) The role of a spiny plant refuge in structuring grazed short grass steppe plant communities. Oikos 98:53–64

    Article  Google Scholar 

  • Reisner MD, Doescher PS, Pyke DA (2015) Stress-gradient hypothesis explains susceptibility to Bromus tectorum invasion and community stability in North America’s semi-arid Artemisia tridentata wyomingensis ecosystems. J Veg Sci 26:1212–1224

    Article  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    Article  CAS  PubMed  Google Scholar 

  • Roche MD, Pearse IS et al (2021) Negative effects of an allelopathic invader on AM fungal plant species drive community-level responses. Ecology 102:e03201

    Article  PubMed  Google Scholar 

  • Salomone F (2005) Desarrollo de un índice de abundancia relativa para ciervo colorado (Cervus elaphus) en la reserva provincial Parque Luro. La Pampa. Informe final, Consejo Federal de Inversiones Provincia de La Pampa ((in Spanish))

    Google Scholar 

  • Sax DF, Brown JH (2000) The paradox of invasion. Global Ecol Biogeogr 9:363–371

    Article  Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:623–656

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Simberloff D (2006) Invasional meltdown 6 years later: Important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919

    Article  PubMed  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown. Biol Invasions 1:21–32

    Article  Google Scholar 

  • Travaset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Ann Rev Ecol Evol Syst 45:89–113

    Article  Google Scholar 

  • Valiente-Banuet A, Vital Rumebe A, Verdú M, Callaway RM (2006) Modern quaternary plant linages promote diversity through facilitation of ancient Tertiary lineages. Proc Natl Acad Sci USA 103:16812–16817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    Article  PubMed  Google Scholar 

  • West PW, Ramachandran TP (1966) Spectrophotometric determination of nitrate using chromotropic acid. Anal Chem Acta 35:317–324

    Article  CAS  Google Scholar 

  • Williams JT (1963) Biological flora of the British isles: Chenopodium album L. J Ecol 51:711–725

    Article  Google Scholar 

  • Yao S, Lan H, Zhang F (2010) Variation of seed heteromorphism in Chenopodium album and the effect of salinity stress on the descendants. Ann Bot 105:1015–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We recognize permission from ranch owners and Parque Luro authorities to conduct our work and logistical support from G. Rodríguez and D. Villarreal. We thank field and lab assistance of 24 undergraduate students, and are particularly in debt to M. Weinzettel, C. Polanco, R. Barón, P. Parache, E. Riesco, and M. García. Comments from two anonymous Reviewers greatly improved a previous version of this manuscript. This research was funded by the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT PIDRI 2007 0287) and UNLPam (RN27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Hierro.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 17 KB)

Supplementary file 2 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estanga-Mollica, M.E., Schmidt, R.M., Cock, M.C. et al. Non-native weed reaches community dominance under the canopy of dominant native tree. Biol Invasions 23, 2849–2861 (2021). https://doi.org/10.1007/s10530-021-02538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-021-02538-z

Keywords

Navigation