The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors

Abstract

The Asian hornet (Vespa velutina) is a keen predator of honeybees and other insects. Its success as invasive species threatens the stability of ecosystem services provided by them, such as pollination of wild plants and crops. In this study we analyse their impact as hunters of flower visitors on plant pollination, by studying the hunting behaviour of V. velutina in flower surroundings, the effect of V. velutina hunting on the floral visiting behaviour by insects and its impact on the amount of conspecific pollen deposited on the stigmas of Mentha suaveolens, a native and common herb to southern and western Europe. We made observations and video-recordings in blooming patches with and without the presence of V. velutina and quantified the deposition of conspecific pollen on stigmas in those same patches. Asian hornets were frequent and successful hunters of flower visitors of Mentha suaveolens, inducing changes in the foraging behaviour of several groups of pollinators. The patch visitation rate of European honeybees (Apis mellifera), the flower visitation rate of small hymenopterans and the flower visitation time of bumblebees (Bombus sp.) and syrphids was significantly reduced in patches with presence of the predator. As a consequence, the quantity of conspecific pollen on stigmas of the studied native plant decreased in patches with V. velutina. In this study we demonstrate the negative impact of the invasive hornet V. velutina on pollination services in invaded areas as a consequence of their hunting of pollinators in flower patches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abbott KR (2006) Bumblebees avoid flowers containing evidence of past predation events. Can J Zool 84:1240–1247

    Google Scholar 

  2. Abbott KR, Dukas R (2009) Honeybees consider flower danger in their waggle dance. Anim Behav 78:633–635

    Google Scholar 

  3. Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS biol 6:e31

    PubMed  PubMed Central  Google Scholar 

  4. Arca M, Papachristoforou A, Mougel F et al (2014) Defensive behaviour of Apis mellifera against Vespa velutina in France: testing whether European honeybees can develop an effective collective defence against a new predator. Behav Process 106:122–129

    Google Scholar 

  5. Barbosa P, Castellanos I (2005) Ecology of predator-prey interactions. Oxford University Press, Oxford

    Google Scholar 

  6. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  7. Beggs JR, Brockerhoff EG, Corley JC et al (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526

    Google Scholar 

  8. Brechbühl R, Kropf C, Bacher S (2010) Impact of flower-dwelling crab spiders on plant-pollinator mutualisms. Basic Appl Ecol 11:76–82

    Google Scholar 

  9. Budge GE, Hodgetts J, Jones EP et al (2017) The invasion, provenance and diversity of Vespa velutina Lepeletier (Hymenoptera: Vespidae) in Great Britain. PLoS ONE 12:e0185172

    PubMed  PubMed Central  Google Scholar 

  10. Carvalheiro LG, Kunin WE, Keil P et al (2013) Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol Lett 16:870–878

    PubMed  PubMed Central  Google Scholar 

  11. Choi MB, Martin SJ, Lee JW (2012) Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. J Asia Pac Entomol 15:473–477

    Google Scholar 

  12. Cini A, Cappa F, Petrocelli I, Pepiciello I, Bortolotti L, Cervo R (2018) Competition between the native and the introduced hornets Vespa crabro and Vespa velutina: a comparison of potentially relevant life-history traits. Ecol Entomol 43:351–362

    Google Scholar 

  13. De Jong D (1990) Insects: Hymenoptera (ants, wasps, and bees). In: Morse RA, Nowogrodzki R (eds) Honey bee pests, predators, and diseases. Cornell University Press, Ithaca, pp 135–155

    Google Scholar 

  14. Dukas R (2005) Bumble bee predators reduce pollinator density and plant fitness. Ecology 86:1401–1406

    Google Scholar 

  15. Elliott NB, Elliott WM (1994) Recognition and avoidance of the predator Phymata americana Melin on Solidago odora Ait. by late season floral visitors. Am Midl Nat 131:378–380

    Google Scholar 

  16. EU Regulation 1143/2014. https://ec.europa.eu/environment/nature/invasivealien/list/index_en.htm

  17. Fox J, Friendly M, Weisberg S (2013) Hypothesis tests for multivariate linear models using the car package. R J 5:39–52

    Google Scholar 

  18. Haxaire J, Bouguet J-P, Tamisier J-P (2006) Vespa velutina Lepeletier, 1836, une redoutable nouveauté pour la faune de France (Hym, Vespidae). Bull Soc Entomol Fr 111:194

    Google Scholar 

  19. Holm S (1979) A simple sequential rejective multiple test procedure. Scan J Stat 6:65–70

    Google Scholar 

  20. INPN (Inventaire National du Patrimoine Naturel) (2018) Le Frelon asiatique Vespa velutina. https://frelonasiatique.mnhn.fr/home/. Accessed 27 June 2019.

  21. Jeanne R (1980) Evolution of social behaviour in the Vespidae. Ann Rev Entomol 25:371–396

    Google Scholar 

  22. Jones EI, Dornhaus A (2011) Predation risk makes bees reject rewarding flowers and reduce foraging activity. Behav Ecol Sociobiol 65:1505–1511

    Google Scholar 

  23. Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Boulder

    Google Scholar 

  24. Korner-Nievergelt F, Roth T, von Felten S et al (2015) Blmeco: data files and functions accompanying the book “Bayesian Data Analysis in Ecology Using R, BUGS and Stan”. Elsevier, New York

  25. Leza M, Herrera C, Marques A, Roca P, Sastre-Serra J, Pons DG (2019) The impact of the invasive species Vespa velutina on honeybees: A new approach based on oxidative stress. Sci Total Environ 689:709–715

    CAS  PubMed  Google Scholar 

  26. Llandres AL, Gonzálvez FG, Rodríguez-Gironés MA (2013) Social but not solitary bees reject dangerous flowers where a conspecific has recently been attacked. Anim Behav 85:97–102

    Google Scholar 

  27. Matsuura M, Yamane S (1990) Biology of vespine wasps. Springer-Verlag, Berlin

    Google Scholar 

  28. Monceau K, Arca M, Leprêtre L et al (2013) Native prey and invasive predator patterns of foraging activity: the case of the yellow-legged hornet predation at European honeybee hives. PLoS ONE 8:e66492

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Monceau K, Bonnard O, Thiéry D (2014) Vespa velutina: a new invasive predator of honeybees in Europe. J Pest Sci 87:1–16

    Google Scholar 

  30. Monceau K, Maher N, Bonnard O, Thiéry D (2015) Evaluation of competition between a native and an invasive hornet species: do seasonal phenologies overlap? Bull Entomol Res 105:462–469

    CAS  PubMed  Google Scholar 

  31. Monceau K, Thiéry D (2017) Vespa velutina nest distribution at a local scale: An 8-year survey of the invasive honeybee predator. Insect Sci 24:663–674

    PubMed  PubMed Central  Google Scholar 

  32. Muñoz AA, Arroyo MT (2004) Negative impacts of a vertebrate predator on insect pollinator visitation and seed output in Chuquiraga oppositifolia, a high Andean shrub. Oecologia 138:66–73

    PubMed  Google Scholar 

  33. Nieh JC (2010) A negative feedback signal that is triggered by peril curbs honey bee recruitment. Curr Biol 20:310–315

    CAS  PubMed  Google Scholar 

  34. Ohashi K, Yahara T (2001) Behavioral responses of pollinators to variation in floral display size and their influences on the evolution of floral traits. In: Chittka L, Thomson J (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 274–296

    Google Scholar 

  35. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Google Scholar 

  36. Perrard A, Haxaire J, Rortais A, Villemant C (2009) Observations on the colony activity of the Asian hornet Vespa velutina Lepeletier 1836 (Hymenoptera: Vespidae: Vespinae) in France. Ann Soc Entomol Fr 45:119–127

    Google Scholar 

  37. Poidatz J, Monceau K, Bonnard O, Thiéry D (2018) Activity rhythm and action range of workers of the invasive hornet predator of honeybees Vespa velutina, measured by radio frequency identification tags. Ecol Evol 8:7588–7598

    PubMed  PubMed Central  Google Scholar 

  38. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    PubMed  PubMed Central  Google Scholar 

  39. Pyšek P, Jarošík V, Hulme PE et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Glob Chang Biol 18:1725–1737

    PubMed Central  Google Scholar 

  40. Rader R, Bartomeus I, Garibaldi LA et al (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci 113:146–151

    CAS  PubMed  Google Scholar 

  41. Requier F, Rome Q, Chiron G et al (2019) Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. J Pest Sci 92:567–578

    Google Scholar 

  42. Richter MR (2000) Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu Rev Entomol 45:121–150

    CAS  PubMed  Google Scholar 

  43. Rojas-Nossa SV, Novoa N, Serrano A, Calviño-Cancela M (2018) Performance of baited traps used as control tools for the invasive hornet Vespa velutina and their impact on non-target insects. Apidologie 49:872–885

    CAS  Google Scholar 

  44. Rome Q, Muller FJ, Touret-Alby A, Darrouzet E, Perrard A, Villemant C (2015) Caste differentiation and seasonal changes in Vespa velutina (Hym: Vespidae) colonies in its introduced range. J Appl Entomol 139:771–782

    Google Scholar 

  45. Romero GQ, Koricheva J (2011) Contrasting cascade effects of carnivores on plant fitness: a meta-analysis. J Anim Ecol 80:696–704

    PubMed  Google Scholar 

  46. Romero GQ, Antiqueira PA, Koricheva J (2011) A meta-analysis of predation risk effects on pollinator behaviour. PLoS ONE 6:e20689

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Russo L, Memmott J, Montoya D, Shea K, Buckley YM (2014) Patterns of introduced species interactions affect multiple aspects of network structure in plant–pollinator communities. Ecology 95:2953–2963

    Google Scholar 

  48. Schweiger O, Biesmeijer JC, Bommarco R et al (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85:777–795

    PubMed  Google Scholar 

  49. Suttle KB (2003) Pollinators as mediators of top-down effects on plants. Ecol Lett 6:688–694

    Google Scholar 

  50. Tan K, Hu Z, Chen W, Wang Z, Wang Y, Nieh JC (2013) Fearful foragers: honey bees tune colony and individual foraging to multi-predator presence and food quality. PLoS ONE 8:e75841

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan K, Li H, Yang MX, Hepburn HR, Radloff SE (2010) Wasp hawking induces endothermic heat production in guard bees. J Insect Sci 10:142

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tan K, Radloff SE, Li JJ et al (2007) Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera. Naturwissenschaften 94:469–472

    CAS  PubMed  Google Scholar 

  53. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Google Scholar 

  54. Ueno T (2014) Establishment of the invasive hornet Vespa velutina (Hymenoptera : Vespidae) in Japan. Int J Chem Environ Biol Sci 2:220–222

    Google Scholar 

  55. Vanbergen AJ, Espíndola A, Aizen MA (2018) Risks to pollinators and pollination from invasive alien species. Nat Ecol Evol 2:16

    PubMed  Google Scholar 

  56. Villemant C, Muller F, Haubois S, Perrard A, Darrouzet E, Rome Q (2011) Bilan des travaux (MNHN et IRBI) sur l’invasion en France de Vespa velutina, le frelon asiatique prédateur d’abeilles. In: Barbançon J-M, L’Hostis M (eds) Proc J Scient Apicole. ONIRIS-FNOSAD, Nantes, pp 3–12

    Google Scholar 

  57. Wilson EE, Mullen LM, Holway DA (2009) Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc Nat Acad Sci 106:12809–12813

    CAS  PubMed  Google Scholar 

  58. Xunta de Galicia (2016) Protocolo de vixilancia e control fronte a avespa asiática (Vespa velutina). https://boqueixon.gal/contido/subidas/2017/03/Protocolo_vixilancia_e_control_vespa_velutina_Galicia_Rev_2016.pdf. Accessed 09 May 2020

Download references

Acknowledgements

This work was supported by Xunta de Galicia through the collaboration agreement between Consellería de Medio Ambiente e Ordenación do Territorio, University of Vigo and University of Santiago de Compostela for the Study of behaviour, habitat and impact on ecosystems of Vespa velutina, and improvement of control methods (2017). L. O. Aguado helped with identification of insects. We also thank two anonymous reviewers for the valuable comments on an earlier draft of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandra V. Rojas-Nossa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rojas-Nossa, S.V., Calviño-Cancela, M. The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biol Invasions 22, 2609–2618 (2020). https://doi.org/10.1007/s10530-020-02275-9

Download citation

Keywords

  • Behaviour of pollinators
  • Invasive hornet
  • Pollination services
  • Predation