Origin and genetic diversity of the invasive mussel Semimytilus algosus in South Africa, relative to source populations in Chile and Namibia

Abstract

Worldwide, the spread of alien species in marine ecosystems has increased, with mussels frequently being involved. In South Africa, 91 alien and 39 cryptic marine and estuarine species, from 17 taxonomic groups, are known. Of these, three are associated with major invasions, including the Pacific mussel, Semimytilus algosus, which has rapidly spread and colonised the lower portions of rocky shores on the west coast. Semimytilus algosus is indigenous to Chile and has been introduced to Namibia. To determine the source and likely mode of introduction of S. algosus, we analysed the population genetic structure of eight populations on the west coast of South Africa and Namibia, as well as three populations in the native Chilean range. Using cytochrome c oxidase subunit I, we collected sequence data from 226 individuals sampled across the 11 localities. We detected no evidence for founder effects, as the South African and Namibian populations had comparable genetic variation to those sampled in Chile, pointing to large effective population sizes and high propagule pressure in the region. It is probable that the Namibian population originated from Chile, and that introduction took place from there to South Africa via a single and substantial natural larval dispersal that breached the biogeographic barrier created by the Lüderitz upwelling cell; but we cannot discount the possibility that introduction associated with oyster aquaculture played a role. Based on comparisons with Mytilus galloprovincialis, we predict S. algosus will continue to spread in South Africa but will be confined to temperate regions; reduce limpet abundance by monopolising primary substratum and because it is too small for them to occupy its shells; and supplement food sources for predators such as oystercatchers and dogwhelks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution and control of invasive species. Conserv Biol 17:24–30. https://doi.org/10.1046/j.1523-1739.2003.02365.x

    Article  Google Scholar 

  2. Andrello M, Mouillot D, Somot S, Thuiller W, Manel S (2015) Additive effects of climate change on connectivity between marine protected areas and larval supply to fished areas. Divers Distrib 21:139–150. https://doi.org/10.1111/ddi.12250

    Article  Google Scholar 

  3. Assis J, Zupan M, Nicastro KR, Zardi GI, McQuaid CD, Serrão EA (2015) Oceanographic conditions limit the spread of a marine invader along southern African shores. PLoS ONE 10:e0128124. https://doi.org/10.1371/journal.pone.0128124

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bax W, Williamson N, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323. https://doi.org/10.1016/S0308-597X(03)00041-1

    Article  Google Scholar 

  5. Blamey LK, Branch GM (2012) Regime shift of a kelp-forest benthic commiunity induced by an ‘invasion’ of the rock lobster Jasus lalandii. J Exp Mar Biol Ecol 420–421:33–47. https://doi.org/10.1016/j.jembe.2012.03.022

    Article  Google Scholar 

  6. Blamey LK, Howard JAE, Agenbag J, Jarre A (2012) Regime-shifts in the southern Benguela shelf and inshore region. Prog Oceanogr 106:80–95. https://doi.org/10.1016/j.ocean.2012.07.001

    Article  Google Scholar 

  7. Bolton JJ, Anderson RJ, Smit AJ, Rothman MD (2012) South African kelp moving eastwards: the discovery of Ecklonia maxima (Osbeck) Papenfuss at De Hoop Nature Reserve on the south east coast of South Africa. Afr J Mar Sci 34:147–151. https://doi.org/10.2989/1814232X.2012.675125

    Article  Google Scholar 

  8. Branch GM, Steffani C (2004) Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). J Exp Mar Biol Ecol 300:189–215. https://doi.org/10.1016/j.jembe.2003.12.007

    Article  Google Scholar 

  9. Branch GM, Odendaal F, Robinson TB (2010) Competition and facilitation between the alien mussel Mytilus galloprovincialis and indigenous species: moderation by wave action. J Exp Mar Biol Ecol 383:65–78. https://doi.org/10.1016/j.jembe2009.10.007

    Article  Google Scholar 

  10. Briski E, Bailey SA, Casas-Monroy O, DiBacco C, Kaczmarska I, Levings C, MacGillivary ML, McKindsey CW, Nasmith LE, Parenteau M, Piercey GE, Rochon A, Roy S, Simard N, Villac MC, Weise AM, MacIsaac HJ (2012) Relationship between propagule pressure and colonization pressure in invasion ecology: a test with ships’ ballast. Proc R Soc B 279:2990–2997. https://doi.org/10.1098/rspb.2011.2671

    Article  PubMed  Google Scholar 

  11. Brochier T, Echevin V, Tam J, Chaigneau A, Goubanova K, Bertrand A (2013) Climate change scenarios experiments predict a future reduction in small pelagic fish recruitment in the Humboldt Current system. Glob Change Biol 19:1841–1853. https://doi.org/10.1111/gcb.12184

    Article  Google Scholar 

  12. Bustamante RH, Branch GM (1996a) The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa. J Exp Mar Biol Ecol 196:1–28. https://doi.org/10.1016/0022-0981(95)00093-3

    Article  Google Scholar 

  13. Bustamante RH, Branch GM (1996b) Large scale patterns and trophic structure of southern African rocky shores: the roles of geographic variation and wave exposure. J Biogeogr 23:339–351. https://doi.org/10.1046/j.1365-2699.1996.00026.x

    Article  Google Scholar 

  14. Calazans SH, Walters LJ, Fernandez FC, Ferriera CEL, Hoffman EA (2017) Genetic tructure provides insights into the geographic origins and temporal change in the invasive charru mussel (Sururu) in the southeastern United States. PLoS ONE 12:e0180619. https://doi.org/10.1371/journal.pone.0180619

    CAS  Article  Google Scholar 

  15. Caro A, Castilla JC (2004) Predator-inducible defences and local intrapopulation variability of the intertidal mussel Semimytilus algosus in central Chile. Mar Ecol Prog Ser 276:115–123. https://doi.org/10.3354/meps276115

    Article  Google Scholar 

  16. Carranza A, Defeo O, Castilla JC, Rangel TFLVB (2009) Latitudinal gradients in species richness for South American Mytilidae and Ostreidae: Can alternative hypotheses be evaluated by a correlative approach? Mar Biol 156:1917–1928. https://doi.org/10.1007/s00227-009-1224-z

    Article  Google Scholar 

  17. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. https://doi.org/10.1046/j.1365-294X.2000.01020.x

    CAS  Article  PubMed  Google Scholar 

  18. Crocetta F (2012) Marine alien Mollusca in Italy: a critical review and state of the knowledge. J Mar Biol Assoc UK 92:1357–1365. https://doi.org/10.1017/S002531541100186X

    Article  Google Scholar 

  19. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1

    Article  Google Scholar 

  20. Crooks JA, Soulé ME (1999) Lag times in population explosions of invasive species: causes and implications. In: Sandlund OT, Schei PJ, Viken Å (eds) Invasive species and biodiversity management. Kluwer Academic Publishers, Dordrecht, pp 103–125

    Google Scholar 

  21. Darling JA, Bagley MJ, Roman J, Tepolt CK, Geller JB (2008) Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol 17:4992–5007. https://doi.org/10.1111/j.1365-294X.2008.03978.x

    CAS  Article  PubMed  Google Scholar 

  22. De Greef K, Griffiths CL, Zeeman Z (2013) Deja vu? A second mytilid mussel, Semimytilus algosus, invades South Africa’s west coast. Afr J Mar Sci 35:307–313. https://doi.org/10.2989/1814232X.2013.829789

    Article  Google Scholar 

  23. Diedericks G, Henriques R, von der Heyden S, Weyl OLF, Hui C (2018) The ghost of introduction past: spatial and temporal variability in the genetic diversity of invasive smallmouth bass. Evol Appl 11:1609–1629. https://doi.org/10.1111/eva.12652

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of mutiple introductions. Mol Ecol 17:431–449. https://doi.org/10.1111/j.1365-294X.2007.03538.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581. https://doi.org/10.1046/j.1365-294X.2002.01650.x

    CAS  Article  PubMed  Google Scholar 

  26. Emanuel BP, Bustamante RH, Branch GM, Eekhout S, Odendaal FJ (1992) A zoogeographic and functional approach to the selection of marine reserves on the west coast of South Africa. S Afr J Mar Sci 12:341–354. https://doi.org/10.2989/02577619209504710

    Article  Google Scholar 

  27. Essl F, Bacher S, Blackburn TM, Booy O, Brundu G, Brunel S, Cardoso AC, Eschen R, Gallardo B, Galil B, García-Berthou E, Genovesi P, Groom Q, Harrower C, Hulme PE, Katsanevakis S, Kenis M, Kühn I, Kumschick S, Martinou AF, Nentwig W, O’Flynn C, Pagad S, Pergl J, Pyšek P, Rabitsch W, Richardson DM, Roques A, Roy HE, Scalera R, Schindler S, Seebens H, Vanderhoeven S, Vilà M, Wilson JRU, Zenetos A, Jeschke JM (2015) Crossing frontiers in tackling pathways of biological invasions. Bioscience 65:769–782. https://doi.org/10.1093/biosci/biv082

    Article  Google Scholar 

  28. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: Why, how and so what? Mol Ecol 19:4113–4130. https://doi.org/10.1111/j.1365-294X.2010.04773.x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:562–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  30. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50. https://doi.org/10.1177/117693430500100003

    CAS  Article  Google Scholar 

  31. Facon B, Genton BJ, Shykoff J, Jarne P, Estoup A, David P (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135. https://doi.org/10.1016/j.tree.2005.10.012

    Article  PubMed  Google Scholar 

  32. Facon B, Pointier J-P, Jarne P, Sarda V, David P (2008) High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr Biol 18:363–367. https://doi.org/10.1016/j.cub.2008.01.063

    CAS  Article  PubMed  Google Scholar 

  33. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaither MR, Toonen RJ, Bowen BW (2012) Coming out of the starting blocks: extended lag time rearranges genetic diversity in introduced marine fishes of Hawai’i. Proc R Soc B 279:3948–3957. https://doi.org/10.1098/rspb.2012.1481

    Article  PubMed  Google Scholar 

  35. Gaither MR, Bowen BW, Toonen RJ (2013) Population structure in the native range predicts the spread of introduced marine species. Proc R Soc B 280:20130409. https://doi.org/10.1098/rspb.2013.0409

    Article  PubMed  Google Scholar 

  36. Golani D, Azzurro E, Corsini-Foka M, Falautano M, Andaloro F, Bernardi G (2007) Genetic bottlenecks and successful biological invasions: the case of a recent Lessepsian migrant. Biol Lett 3:541–545. https://doi.org/10.1098/rsbl.2007.0308

    Article  PubMed  PubMed Central  Google Scholar 

  37. Grant W, Schneider A, Leslie R, Cherry M (1992) Population genetics of the brown mussel Perna perna in southern Africa. J Exp Mar Biol Ecol 165:45–58. https://doi.org/10.1016/0022-0981(92)90288-L

    Article  Google Scholar 

  38. Griffiths CL, Hockey PAR, Van Erkom SC, Le Roux PJ (1992) Marine invasive aliens on South African shores: implications for community structure and trophic functioning. Afr J Mar Sci 12:713–722. https://doi.org/10.2989/02577619209504736

    Article  Google Scholar 

  39. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  40. Hart MW, Marko PB (2010) It’s about time: divergence, demography, and the evolution of developmental modes in marine invertebrates. Integr Comp Biol 50:643–661. https://doi.org/10.1093/icb/icq068

    Article  PubMed  Google Scholar 

  41. Haupt TM, Griffiths CL, Robinson TB, Tonin AFG (2010a) Oysters as vectors of marine aliens, with notes on four introduced species associated with oyster farming in South Africa. Afr Zool 45:52–62. https://doi.org/10.3377/004.045.0101

    Article  Google Scholar 

  42. Haupt TM, Griffiths CL, Robinson TB, Tonin AFG, De Bruyn PA (2010b) The history and status of oyster exploitation and culture in South Africa. J Shellfish Res 29:151–159. https://doi.org/10.2983/035.029.0109

    Article  Google Scholar 

  43. Haupt TM, Griffiths CL, Robinson TB (2012) Intra-regional translocations of epifaunal and infaunal species associated with cultured Pacific oysters Crassostrea gigas. Afr J Mar Sci 34:187–194. https://doi.org/10.2989/1814232X.2012.673293

    Article  Google Scholar 

  44. Henriques R, Potts WM, Santos CV, Sauer WHH, Shaw PW (2014) Population connectivity and phylogeography of a coastal fish, Atractoscion aequidens (Sciaenidae), across the Benguela Current region: evidence of an ancient vicariant event. PLoS ONE 9:1–11. https://doi.org/10.1371/journal.pone.0087907

    CAS  Article  Google Scholar 

  45. Hockey PAR, Van Erkom SC (1992) The invasive biology of the mussel Mytilus galloprovincialis on the Southern African Coast. Trans R Soc S Afr 48:123–139. https://doi.org/10.1080/00359199209520258

    Article  Google Scholar 

  46. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. https://doi.org/10.1126/science.1189930

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Johnson L, Carlton JT (1996) Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology 77:1686–1690. https://doi.org/10.2307/2265774

    Article  Google Scholar 

  48. Kensley B, Penrith M-L (1970) New records of Mytilidae from the northern South West African coast. Ann S Afr Mus 57:15–24

    Google Scholar 

  49. Kensley B, Penrith M-L (1973) The constitution of the intertidal fauna of rocky shores of Moçamedes, southern Angola. Cimbebasia 2:114–123

    Google Scholar 

  50. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. https://doi.org/10.1016/S0169-5347(01)02101-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lamy ME (1931) Voyage de MR Lense dans l’Afrique du Sud. Bull Mus Nat Hist Ser 23:93–100

    Google Scholar 

  52. Leffler EM, Bullaughey K, Matute DR, Meyer WK, Ségurel L, Venkat A, Andolfatto P, Przeworski M (2012) Revisiting an old riddle: What determines genetic diversity levels within species? PLoS Biol 10:e1001388. https://doi.org/10.1371/journal.pbio.1001388

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Lodge DM (1993) Biological invasions: lessons for ecology. Trend Ecol Evol 8:133–137. https://doi.org/10.1016/0169-5347(93)90025-K

    CAS  Article  Google Scholar 

  54. McQuaid CD, Phillips T (2000) Limited wind-driven dispersal of intertidal mussel larvae: in situ evidence from the plankton and the spread of the invasive species Mytilus galloprovincialis in South Africa. Mar Ecol Prog Ser 201:211–220. https://doi.org/10.3354/meps201211

    Article  Google Scholar 

  55. Mead A, Carlton JT, Griffiths CL, Rius M (2011a) Introduced and cryptogenic marine and estuarine species of South Africa. J Nat Hist 45:2463–2524. https://doi.org/10.1080/00222933.2011.595836

    Article  Google Scholar 

  56. Mead A, Carlton JT, Griffiths CL, Rius M (2011b) Revealing the scale of marine bioinvasions in developing regions: a South African re-assessment. Biol Invasions 13:1991–2008. https://doi.org/10.1007/s10530-011-0016-9

    Article  Google Scholar 

  57. Mertens L, Treml EA, von der Heyden S (2018) Genetic and biophysical models help define marine conservation focus areas. Front Mar Sci 5:268. https://doi.org/10.3389/fmars.2018.00268

    Article  Google Scholar 

  58. Mineur F, Cook EJ, Minchin D, Bohn K, Macleod A, Maggs CA (2012) Changing coasts: marine aliens and artificial structures. Oceanogr Mar Biol 50:189–234. https://doi.org/10.1201/B12157

    Article  Google Scholar 

  59. Mkare TK, von der Heyden S, Groeneveld JC, Matthee CA (2014) Genetic population structure and recruitment patterns of three sympatric shallow-water penaeid prawns in Ungwana Bay, Kenya, with implication for fisheries management. Mar Freshw Res 2006:255–266. https://doi.org/10.1071/MF13047

    Article  Google Scholar 

  60. Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, MacIsaac HJ (2008) Identifying the source of species invasions: sampling intensity versus genetic diversity. Mol Ecol 17:1020–1035. https://doi.org/10.1111/j.1365-294X.2008.03669.x

    CAS  Article  PubMed  Google Scholar 

  61. Muller C, von der Heyden S, Bowie R, Matthee CA (2012) Oceanic circulation, local upwelling and palaeoclimatic changes linked to the phylogeography of the Cape sea urchin Parechinus angulosus. Mar Ecol Prog Ser 468:203–215. https://doi.org/10.3354/meps09956

    Article  Google Scholar 

  62. Narváez DA, Navarrete SA, Largier J, Vargas CA (2006) Onshore advection of warm water, larval invertebrate settlement, and relaxation of upwelling off central Chile. Mar Ecol Prog Ser 309:159–173. https://doi.org/10.3354/meps309159

    Article  Google Scholar 

  63. Ovenden JR, Peel D, Street R, Courtney AJ, Hoyle SD, Peel SL, Podlich H (2007) The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus). Mol Ecol 16:127–138. https://doi.org/10.1111/j.1365-294X.2006.03132.x

    CAS  Article  PubMed  Google Scholar 

  64. Papacostas KJ, Rielly-Carroll EW, Georgian SE, Long DJ, Princiotta SD, Quattrini AM, Reuter KE, Freestone AL (2017) Biological mechanisms of marine invasions. Mar Ecol Prog Ser 565:251–268. https://doi.org/10.3354/meps12001

    Article  Google Scholar 

  65. Penrith M-L, Kensley BF (1970a) The constitution of the intertidal fauna of rocky shores of South West Africa. Part I. Lüderitbucht. Cimbebasia 1:191–239

    Google Scholar 

  66. Penrith M-L, Kensley BF (1970b) The constitution of the intertidal fauna of rocky shores of South West Africa. Part II. Rocky Point. Cimbebasia 1:241–268

    Google Scholar 

  67. Peters K, Robinson TB (2018) From Chile to the South African west coast: first reports of the Chilean stone crab Homalapsis plana (H. Milne Edwards, 1834) and the South Anerican sunstar Heliaster helianthus (Lamarck, 1816) outside their natural ranges. Bioinvasions Rec 7:421–426. https://doi.org/10.3391/bir.2018.7.4.11

    Article  Google Scholar 

  68. Peters K, Griffiths CL, Robinson TB (2014) Patterns and drivers of marine bioinvasions in eight Western Cape harbours, South Africa. Afr J Mar Sci 36:49–57. https://doi.org/10.2989/1814232X.2014.890669

    Article  Google Scholar 

  69. Qhaji Y, van Vuuren BJ, Papadopoulos I, McQuaid CD, Teske PR (2015) A comparison of genetic structure in two low-dispersal crabs from the Wild Coast, South Africa. Afr J Mar Sci 37:345–351. https://doi.org/10.2989/1814232X.2015.1077474

    Article  Google Scholar 

  70. Reaugh-Flower K, Branch GM, Harris JM, McQuaid CD, Currie B, Dye A, Robertson B (2011) Scale-dependent patterns and processes of intertidal mussel recruitment around southern Africa. Mar Ecol Prog Ser 434:101–119. https://doi.org/10.3354/meps09169

    Article  Google Scholar 

  71. Rensel M, Elliott J, Wimberger P (2005) Will the introduced mussel Mytilus galloprovincialis outcompete the native mussel M. trossulus in Puget Sound? A study of relative survival and growth rates among different habitats. In: Proceedings of the 2005 Puget Sound Georgia Basin research conference, pp 1–8

  72. Ricciardi A (2015) Ecology of invasive alien invertebrates. In: Thorp J, Rogers D (eds) Ecology and general biology: Thorp and Covich’s freshwater invertebrates, 4th edn. Academic Press, New York, pp 83–91. https://doi.org/10.1016/B978-0-12-385026-3.00005-X

    Google Scholar 

  73. Riquet F, Le Cam S, Fonteneau E, Viard F (2016) Moderate genetic drift is driven by extreme recruitment events in the invasive mollusk Crepidula fornicata. Heredity 117:1–9. https://doi.org/10.1038/hdy.2016.24

    CAS  Article  Google Scholar 

  74. Rius M, Culsella-Trullas S, McQuaid CD, Navarro RA, Griffiths CL, Matthee CA, von der Heyden S, Turon X (2014) Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. Global Ecol Biogeogr 1:1–38. https://doi.org/10.1111/geb.12105

    Article  Google Scholar 

  75. Rius M, Turon X, Bernardi G, Volckaert FAM, Viard F (2015) Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biol Invasions 17:869–885. https://doi.org/10.1007/s10530-014-0792-0

    Article  Google Scholar 

  76. Robinson TB, Pope HR, Hawken L, Binneman C (2015) Predation-driven biotic resistance fails to restrict the spread of a sessile rocky shore invader. Mar Ecol Prog Ser 522:169–179. https://doi.org/10.3354/meps11167

    Article  Google Scholar 

  77. Robinson TB, Alexander ME, Simon CA, Griffiths CL, Paters K, Sibanda S, Miza S, Groenewald B, Majiedt P, Sink KJ (2016) Lost in translation? Standardising the terminology used in marine invasion biology and updating South African alien species lists. Afr J Mar Sci 38:129–140. https://doi.org/10.2989/1814232X.2016.1163292

    Article  Google Scholar 

  78. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. https://doi.org/10.1016/j.tree.2007.07.002

    Article  PubMed  Google Scholar 

  79. Rouault M, Pohl B, Penven P (2010) Coastal oceanic climate change and variability from 1982 to 2009 around South Africa. Afr J Mar Sci 32:237–246. https://doi.org/10.2989/1814232X.2010.501563

    Article  Google Scholar 

  80. Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu Rev Ecol Syst 31:481–531. https://doi.org/10.1146/annurev.ecolsys.31.1.481

    Article  Google Scholar 

  81. Sadchatheeswaran S, Branch GM, Robinson TB (2015) Changes in habitat complexity resulting from sequential invasions of a rocky shore: implications for community structure. Biol Invasions 17:1799–1816. https://doi.org/10.1007/s10530-014-0837-4

    Article  Google Scholar 

  82. Savini D, Occhipinti-Ambrogi A, Marchini A, Tricarico E, Gherardi F, Olenin S, Gollasch S (2010) The top 27 animal alien species introduced into Europe for aquaculture and related activities. J Appl Ichthyol 26:1–7. https://doi.org/10.1111/j.1439-0426.2010.01503.x

    Article  Google Scholar 

  83. Shannon LV (1985) The Benguela ecosystem I: evolution of the Benguela physical features and processes. Oceanogr Mar Biol 23:105–182

    Google Scholar 

  84. Shillington FA, Reason CJC, Duncombe Rae CM, Florenchie P, Penven P (2006) Large scale physical variability of the Benguela Current large marine ecosystem. In: Shannon V, Hempel G, Malanotte-Rizzoli P, Moloney C, Woods J (eds) Benguela: predicting a large marine ecosystem. Elsevier, Amsterdam, pp 49–70

    Google Scholar 

  85. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. https://doi.org/10.1016/S0169-5347(02)02495-3

    Article  Google Scholar 

  86. Silva IC, Mesquita N, Paula J (2010) Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura: Sesarmidae) along an East African latitudinal gradient. Biol J Linn Soc 99:28–46. https://doi.org/10.1111/j.1095-8312.2009.01338.x

    Article  Google Scholar 

  87. Simon-Bouhet B, Garcia-Meunier P, Viard F (2006) Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data. Mol Ecol 15:1699–1711. https://doi.org/10.1111/j.1365-294X.2006.02881.x

    CAS  Article  PubMed  Google Scholar 

  88. Skein L, Robinson TB, Alexander ME (2018) Impacts of mussel invasions on the prey preference of two native predators. Behav Ecol 29:353–359. https://doi.org/10.1093/beheco/arx172

    Article  Google Scholar 

  89. Sorte CJB, Stachowicz JJ (2011) Patterns and processes of compositional change in a California epibenthic community. Mar Ecol Prog Ser 435:63–74. https://doi.org/10.3354/meps09234

    Article  Google Scholar 

  90. Sorte CJB, Williams SL, Carlton JT (2010) Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr 19:303–316. https://doi.org/10.1111/j.1466-8238.2009.00519.x

    Article  Google Scholar 

  91. Tepolt CK, Darling JA, Bagley MJ, Geller JB, Blum MJ, Grosholz ED (2009) European green crabs (Carcinus maenas) in the Northeastern Pacific: genetic evidence for high population connectivity and current-mediated expansion from a single introduced source population. Divers Distrib 15:997–1009. https://doi.org/10.1111/j.1472-4642.2009.00605.x

    Article  Google Scholar 

  92. Teske PR, Papadopoulos I, Zardi GI, McQuaid CD, Edkins MT, Griffiths CL, Barker NP (2007) Implications of life history for genetic structure and migration rates of southern African coastal invertebrates: planktonic, abbreviated and direct development. Mar Biol 152:697–711. https://doi.org/10.1007/s00227-007-0724-y

    Article  Google Scholar 

  93. Van der Lingen CD, Coetzee JC, Hutchings LF (2011) Causes and effects of changes in the distribution of anchovy and sardine in shelf waters off South Africa. In: Zietsman L (ed) Observations on environmental change in South Africa. SUN MeDIA, Stellenboschs, pp 252–257

    Google Scholar 

  94. Van Erkom SC, Griffiths CL (1993) Factors affecting relative rates of growth in four South African mussel species. Aquaculture 109:257–273. https://doi.org/10.1016/0044-8486(93)90168-X

    Article  Google Scholar 

  95. von der Heyden S, Lipinski MR, Matthee CA (2007) Mitochondrial DNA analyses of the Cape hakes reveal an expanding, panmictic population for Merluccius capensis and population structuring for mature fish in Merluccius paradoxus. Mol Phylogenet Evol 42:517–527. https://doi.org/10.1016/j.ympev.2006.08.004

    CAS  Article  PubMed  Google Scholar 

  96. von der Heyden S, Prochazka K, Bowie R (2008) Significant population structure and asymmetric gene flow patterns amidst expanding populations of Clinus cottoides (Perciformes, Clinidae): application of molecular data to marine conservation planning in South Africa. Mol Ecol 17:4812–4826. https://doi.org/10.1111/j.1365-294X.2008.03959.x

    CAS  Article  PubMed  Google Scholar 

  97. Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218. https://doi.org/10.1890/05-0427

    Article  Google Scholar 

  98. Walker N, Taunton-Clark J, Pugh J (1984) Sea temperatures off the South African west coast as indicators of Benguela warm events. S Afr J Sci 80:72–77. https://doi.org/10.2989/025776187784522108

    Article  Google Scholar 

  99. Wei K, Wood AR, Gardner JP (2013) Population genetic variation in the New Zealand greenshell mussel: locus-dependent conflicting signals of weak structure and high gene flow balanced against pronounced structure and high self-recruitment. Mar Biol 160:931–949. https://doi.org/10.1007/s00227-012-2145-9

    Article  Google Scholar 

  100. Westfall KM, Gardner JPA (2010) Genetic diversity of Southern hemisphere blue mussels (Bivalvia: Mytilidae) and the identification of non-indigenous taxa. Biol J Linn Soc 101:898–909. https://doi.org/10.1111/j.1095-8312.2010.01549.x

    Article  Google Scholar 

  101. Williams ST, Benzie JAH (1997) Indo-West Pacific patterns of genetic differentiation in the high-dispersal starfish Linckia laevigata. Mol Ecol 6:559–573. https://doi.org/10.1046/j.1365-294X.1997.00221.x

    Article  Google Scholar 

  102. Zardi GI, McQuaid CD, Teske PR, Barker NP (2007) Unexpected genetic structure of mussel populations in South Africa: Indigenous Perna perna and invasive Mytilus galloprovincialis. Mar Ecol Prog Ser 337:135–144

    CAS  Article  Google Scholar 

  103. Zardi GI, McQuaid CD, Jacinto R, Lourenço CR, Serrão EA, Nicastro KR (2018) Re-assessing the origins of the invasive mussel Mytilus galloprovincialis in southern Africa. Mar Freshw Res 69:607–613. https://doi.org/10.1071/MF17132

    Article  Google Scholar 

  104. Zardus JD, Hadfield MG (2005) Multiple origins and incursions of the Atlantic barnacle Chthamalus proteus in the Pacific. Mol Ecol 14:3719–3733. https://doi.org/10.1111/j.1365-294X.2005.02701.x

    CAS  Article  PubMed  Google Scholar 

  105. Zeeman Z, Branch GM, Pillay D (2018) Comparisons of life-history traits of the alien invasive Semimytilus algosus and three other mytilid mussels on the West Coast of South Africa. Mar Ecol Prog Ser 607:113–127. https://doi.org/10.3354/meps12794

    Article  Google Scholar 

  106. Zerebecki RA, Sorte CJB (2011) Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS ONE 6:e14806. https://doi.org/10.1371/journal.pone.0014806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Zhan A, MacIsaac HJ, Cristescu ME (2010) Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity. Mol Ecol 19:4678–4694. https://doi.org/10.1111/j.1365-294X.2010.04837.x

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Andrew Mellon Foundation, the NRF (National Research Foundation), Ma-Re (Marine Research Institute), and a University of Cape Town doctoral research scholarship. We would like to thank Evie Wieters for hosting ZZ at the research station Estación Costera de Investigaciones Marinas in Mar del Plata, Chile and making possible the collection of Chilean samples. We thank two anonymous reviewers for their constructive improvements to this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zannè Zeeman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeeman, Z., Branch, G.M., Pillay, D. et al. Origin and genetic diversity of the invasive mussel Semimytilus algosus in South Africa, relative to source populations in Chile and Namibia. Biol Invasions 22, 2309–2323 (2020). https://doi.org/10.1007/s10530-020-02257-x

Download citation

Keywords

  • Invasive success
  • Mytilidae
  • Effective population size
  • Genetic diversity
  • Panmixia
  • Natural range expansion