Skip to main content

Climate-induced expansions of invasive species in the Pacific Northwest, North America: a synthesis of observations and projections

Abstract

Climate change may facilitate the expansion of non-native invasive species (NIS) in aquatic and terrestrial systems. However, empirical evidence remains scarce and poorly synthesized at scales necessary for effective management. We conducted a literature synthesis to assess the state of research on the observed and predicted effects of climate change on a suite of 398 aquatic and terrestrial NIS now present in or a major threat to aquatic and terrestrial ecosystems of the Pacific Northwest (PNW), USA and British Columbia. Surprisingly, very few studies (n = 15) have investigated the observed effects of climate change on the distribution, abundance, spread, or impact of the focal NIS, with only five studies focusing on terrestrial (n = 2) or aquatic (n = 3) species within the PNW. Only 93 studies predicted the future dynamics of the focal NIS somewhere in their non-native range using climate model projections, yielding 117 species-specific predictions. However, only 30 of those studies generated predictions that overlapped with the PNW, and only six focused specifically on the expansion or abundance of NIS (n = 11 species) entirely within the region. Although our understanding of how climate change may interact with biological invasions is notably lacking, some evidence suggests that climate-induced NIS expansions are already underway in the PNW, particularly in aquatic ecosystems, and will be exacerbated by future changes in temperature and precipitation regimes. Better information is urgently needed for managers to implement strategic prevention, early detection, and proactive actions that ameliorate ecologically and economically devastating impacts of NIS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abatzoglou JT, Rupp DE, Mote PW (2014) Seasonal climate variability and change in the Pacific Northwest of the United States. J Clim 27:2125–2142

    Article  Google Scholar 

  2. Adrian R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Change Biol 12:652–661

    Article  Google Scholar 

  3. Aguilar GD, Farnworth MJ, Winder L (2015) Mapping the stray domestic cat (Felis catus) population in New Zealand: species distribution modelling with a climate change scenario and implications for protected areas. App Geogr 63:146–154

    Article  Google Scholar 

  4. Al-Chokhachy R, Muhlfeld CC, Boyer MC, Jones LA, Steed A, Kershner JL (2014) Quantifying the effectiveness of conservation measures to control the spread of anthropogenic hybridization in stream salmonids: a climate adaptation case study. N Am J Fish Manag 34:642–652

    Article  Google Scholar 

  5. Al-Chokhachy R, Schmetterling D, Clancy C, Saffel P, Kovach R, Nyce L, Liermann B, Fredenberg W, Pierce R (2016) Are brown trout replacing or displacing bull trout populations in a changing climate? Can J Fish Aquat Sci 73:1395–1404

    Article  Google Scholar 

  6. Alofs KM, Jackson DA (2015) The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada. Glob Change Biol 21:2227–2237

    Article  Google Scholar 

  7. Alofs KM, Jackson DA, Lester NP (2014) Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers Distrib 20:123–136

    Article  Google Scholar 

  8. Ayllon D, Railsback SF, Harvey BC, Quiros IG, Nicola GG, Elvira B, Almodovar A (2019) Mechanistic simulations predict that thermal and hydrological effects of climate change on Mediterranean trout cannot be offset by adaptive behavior, evolution, and increased food production. Sci Total Environ 693:133648

    CAS  PubMed  Article  Google Scholar 

  9. Balch JK, Bradley BA, D'Antonio CM, Gómez-Dans J (2013) Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob Change Biol 19:173–183

    Article  Google Scholar 

  10. Bates AE, McKelvie CM, Sorte CJB, Morley SA, Jones NAR, Mondon JA, Bird TJ, Quinn G (2013) Geographical range, heat tolerance and invasion success in aquatic species. Proc R Soc B 280:20131958

    PubMed  Article  Google Scholar 

  11. Bêche LA, Connors PG, Resh VH, Merenlender AM (2009) Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 32:778–788

    Article  Google Scholar 

  12. Bentz BJ, Régnière J, Fettig CJ, Hansen M, Hayes JL, Hicke JA, Kelsey RG, Negrón SF, Seybold SJ (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–613

    Article  Google Scholar 

  13. Bhattarai GP, Cronin JT (2014) Hurricane activity and the large-scale pattern of spread of an invasive plant species. PLoS ONE 9(5):e98478

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Bonebrake TC, Brown CJ, Bell JD, Blanchard JL, Chauvenet A, Champion C, Chen I-C, Clark TD et al (2018) Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biol Rev 93:284–305

    PubMed  Article  Google Scholar 

  15. Bradley BA (2009) Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Glob Change Biol 15:196–208

    Article  Google Scholar 

  16. Bradley BA, Oppenheimer M, Wilcove DS (2009) Climate change and plant invasions: restoration opportunities ahead? Glob Change Biol 15:1511–1521

    Article  Google Scholar 

  17. Bradshaw CJA, Leroy B, Bellard C, Roiz D, Albert C, Fournier A, Barbet-Massin M, Salles J-M, Simard F, Courchamp F (2016) Massive yet grossly underestimated global costs of invasive insects. Nat Commun 7:12986

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Britton JR, Cucherousset J, Davies GD, Godard MJ, Copp GH (2010) Non-native fishes and climate change: predicting species responses to warming temperatures in a temperate region. Freshw Biol 55:1130–1141

    Article  Google Scholar 

  19. Brummer TJ, Taylor KT, Rotella J, Maxwell BD, Rew LJ, Lavin M (2016) Drivers of Bromus tectorum abundance in the western North American sagebrush steppe. Ecosystems 19:986–1000

    Article  Google Scholar 

  20. Buotte PC, Hicke JA, Preisler HK, Abatzoglou JT, Raffa KF, Logan JA (2016) Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem. Ecol Appl 26:2507–2524

    Article  Google Scholar 

  21. Caissie D (2006) The thermal regime of rivers: a review. Freshw Biol 51:1389–1406

    Article  Google Scholar 

  22. Capinha C, Anastacio P, Tenedorio JA (2012) Predicting the impact of climate change on the invasive decapods of the Iberian inland waters: an assessment of reliability. Biol Invasions 14:1737–1751

    Article  Google Scholar 

  23. Capinha C, Larson ER, Tricarico E, Olden JD, Gherardi F (2013) Effects of climate change, invasive species, and disease on the distribution of native European crayfishes. Conserv Biol 27:731–740

    PubMed  Article  Google Scholar 

  24. Cardacor L, Blackburn T (2019) Human-habitat associations in the native distributions of alien bird species. J Appl Ecol 56:1189–1199

    Article  Google Scholar 

  25. Carey MP, Sanderson BL, Barnas KA, Olden JD (2012) Native invaders-challenges for science, management, policy, and society. Front Ecol Environ 10:373–381

    Article  Google Scholar 

  26. Carlson Mazur ML, Kowalski KP, Galbraith D (2014) Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone. Aquat Invasions 9:1–19

    Article  Google Scholar 

  27. Chapin FS, McFarland J, David McGuire A, Euskirchen ES, Ruess RW, Kielland K (2009) The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. J Ecol 97:840–850

    CAS  Article  Google Scholar 

  28. Chapman DS, Haynes T, Beal S, Essl F, Bullock JM (2014) Phenology predicts the native and invasive range limits of common ragweed. Glob Change Biol 20:192–202

    Article  Google Scholar 

  29. Clark ME, Rose KA, Levine DA, Hargrove WW (2001) Predicting climate change effects on Appalachian trout: combining GIS and individual-based modeling. Ecol Appl 11:161–178

    Article  Google Scholar 

  30. Colautti RI, Bailey SA, van Overdijk CDA, Amundsen K, MacIsaac HJ (2006) Characterised and projected costs of nonindigenous species in Canada. Biol Invasions 8:45–59

    Article  Google Scholar 

  31. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Dukes JS, Mooney HA (2004) Disruption of ecosystem processes in western North America by invasive species. Rev Chil Hist Nat 77:411–437

    Article  Google Scholar 

  33. Edwards BA, Southee FM, McDermid JL (2016) Using climate and a minimum set of local characteristics to predict the future distributions of freshwater fish in Ontario, Canada, at the lake-scale. Glob Ecol Conserv 8:71–84

    Article  Google Scholar 

  34. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  35. Ferguson GJ, Ward TM, Ye Q, Geddes MC, Gillanders BM (2013) Impacts of drought, flow regime, and fishing on the fish assemblage in southern Australia’s largest temperate estuary. Estuar Coast 36:737–753

    CAS  Article  Google Scholar 

  36. Fleming JP, Dibble ED (2015) Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746:23–37

    Article  Google Scholar 

  37. Franklin J, Davis FW, Ikegami M, Syphard AD, Flint LE, Flint AL, Hannah L (2013) Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Change Biol 19:473–483

    Article  Google Scholar 

  38. Gallardo B, Aldridge DC (2013) Evaluating the combined threat of climate change and biological invasions on endangered species. Biol Conserv 160:225–233

    Article  Google Scholar 

  39. Gama M, Crespo D, Dolbeth M et al (2017) Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquat Conserv 27:675–684

    Article  Google Scholar 

  40. Gillard M, Thiebaut G, Deleu C, Leroy B (2017) Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biol Invasions 19:2159–2170

    Article  Google Scholar 

  41. Gosper CR, Sansbury CD, Vivian-Smith G (2005) Seed dispersal of fleshy-fruited invasive plants by birds: contributing factors and management options. Divers Distrib 11:549–558

    Article  Google Scholar 

  42. Gray DR (2017) Climate change can reduce the risk of biological invasion by reducing propagule size. Biol Invasions 19:913–923

    Article  Google Scholar 

  43. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

    PubMed  Article  Google Scholar 

  44. Hill MP, Bertelsmeier C, Clusella-Trullas S, Garnas J, Robertson MP, Terblanche JS (2016) Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biol Invasions 18:1105–1119

    Article  Google Scholar 

  45. Hou Q-Q, Chen B-M, Peng S-L, Chen L-Y (2014) Effects of extreme temperature on seedling establishment of nonnative invasive plants. Biol Invasions 16:2049–2061

    Article  Google Scholar 

  46. Hulme PE (2017) Climate change and biological invasions: evidence, expectations, and response options. Biol Rev 92:1297–1313

    PubMed  PubMed Central  Article  Google Scholar 

  47. Humair F, Edwards PJ, Siegrist M, Kueffer C (2014) Understanding misunderstandings in invasion science: why experts don’t agree on common concepts and risk assessments. Neobiota 20:1–30

    Article  Google Scholar 

  48. Ihlow F, Courant J, Secondi J, Herrel A, Rebelo R, Measey GJ et al (2016) Impacts of climate change on the global invasion potential of the African clawed frog Xenopus laevis. PLoS ONE 11(6):e0154869

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Invasive Species of Idaho (2017) Terrestrial plants. https://invasivespecies.idaho.gov/terrestrial-plants. Accessed 23 Apr 2019

  50. Jiang WP, Huang G, Huang P, Hu KM (2018) Weakening of northwest Pacific anticyclone anomalies during post-El Nino summers under global warming. J Clim 31:3539–3555

    Article  Google Scholar 

  51. Jarnevich CS, Young NE, Sheffels TR, Carter J, Sytsma MD (2017) Evaluating simplistic methods to understand current distributions and forecast distribution changes under climate change scenarios: an example with coypu (Myocastor coypus). Neobiota 32:107–125

    Article  Google Scholar 

  52. Jarošik V, Kenis M, Honӗk A, Skuhrovek J, Pyӗek P (2015) Invasive insects differ from non-invasive in their thermal requirements. PLoS ONE 10(6):e0131072

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Kistner EJ (2017) Climate change impacts on the potential distribution and abundance of the brown marmorated stink bug (Hemiptera: Pentatomidae) with special reference to North America and Europe. Environ Entomol 46:1212–1224

    PubMed  Article  Google Scholar 

  54. Kocmánková E, Trnka M, Eitzinger J, Dubrovský M, Štěpánek P, Semerádová D, Balek J, Skalák P, Farda A, Juroch J, Žalud Z (2011) Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. J Agric Sci 149:185–195

    Article  Google Scholar 

  55. Kocmánková E, Trnka M, Eitzinger J, Formayer H, Dubrovský M, Semerádová D, Žalud Z, Juroch J, Možny M (2010) Estimating the impact of climate change on the occurrence of selected pests in the central European region. Clim Res 44:95–105

    Article  Google Scholar 

  56. Kovach RP, Muhlfeld CC, Al-Chokhachy R, Dunham JB, Letcher BH, Kershner JL (2016) Impacts of climatic variation on trout: a global synthesis and path forward. Rev Fish Biol Fish 26:135–151

    Article  Google Scholar 

  57. Kovach RP, Muhlfeld CC, Boyer MC, Lowe WH, Allendorf FW, Luikart G (2015) Dispersal and selection mediate hybridization between a native and invasive species. Proc R Soc B 282:20142454

    PubMed  Article  Google Scholar 

  58. Kriticos DJ, Brunel S (2016) Assessing and managing the current and future pest risk from water hyacinth, (Eichhornia crassipes), an invasive aquatic plant threatening the environment and water security. PLoS ONE 11(8):e0120054

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Kriticos DJ, Watt MS, Potter KJB, Manning LK, Alexander NS, Tallent-Halsell N (2011) Managing invasive weeds under climate change: considering the current and potential future distribution of Buddleja davidii. Weed Res 51:85–96

    Article  Google Scholar 

  60. Kroschel J, Sporleder M, Tonnang HEZ, Juarez H, Carhuapoma P, Gonzales JC, Simon R (2013) Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agric Forest Meteorol 170:228–241

    Article  Google Scholar 

  61. Kurz WA, Dymond CC, Stinson G, Gj R, Neilson ET, Al C, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    CAS  PubMed  Article  Google Scholar 

  62. Kwon M, Kim J, Maharjan R, Choi J-Y, Kim GH (2017) Change in the distribution of the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in Korea. J Asia-Pac Entomol 20:1249–1253

    Article  Google Scholar 

  63. Langille AB, Arteca EM, Newman JA (2017) The impacts of climate change on the abundance and distribution of the Spotted Wing Drosophila (Drosophila suzukii) in the United States and Canada. PeerJ 5:e3192

    PubMed  PubMed Central  Article  Google Scholar 

  64. Lawrence DJ, Stewart-Koster B, Olden JD, Ruesch AS, Torgersen CE, Lawler JJ, Butcher DP, Crown JK (2014) The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon. Ecol Appl 24:895–912

    PubMed  Article  Google Scholar 

  65. Lei JC, Chen L, Li H (2017) Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata). Environ Monit Assess 189:404

    PubMed  Article  Google Scholar 

  66. Leung B, Bossenbroek JM, Lodge DM (2006) Boats, pathways, and aquatic biological invasions: estimating dispersal potential with gravity models. Biol Invasions 8:241–254

    Article  Google Scholar 

  67. Liang L, Fei SL (2014) Divergence of the potential invasion range of emerald ash borer and its host distribution in North America under climate change. Clim Change 122:735–746

    Article  Google Scholar 

  68. Liu XA, Guo ZW, Ke ZW, Wang S, Li Y (2011) Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change. PLoS ONE 6(3):e18429

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Liu Y, Oduor AMO, Zhang Z, Manea A, Tooth IM, Leishman MR, Xu X, van Kleunen M (2017) Do invasive alien plants benefit more from global environmental change than native plants? Glob Change Biol 23:3363–3370

    Article  Google Scholar 

  70. Logan JA, Régnière J, Gray DR, Munson AS (2007) Risk assessment in the face of a changing climate: gypsy moth and climate change in Utah. Ecol Appl 17:101–117

    CAS  PubMed  Article  Google Scholar 

  71. Lowe SJ, Browne M, Boudjelas S (2004) 100 of the World’s worst invasive alien species. A selection from the Global Invasive Species Database. IUCN/SSC Invasive Species Specialist Group (ISSG), Auckland

    Google Scholar 

  72. Lynch AJ, Myers BJE, Chu C, Eby LA, Falke JA, Kovach RP, Krabbenhoft TH, Kwak TJ, Lyons J, Paukert CP, Whitney JE (2016) Climate change effects on North American inland fish populations and assemblages. Fisheries 41:346–361

    Article  Google Scholar 

  73. Marbuah G, Gren I-M, McKie B (2014) Economics of harmful invasive species: a review. Diversity 6:500–523

    Article  Google Scholar 

  74. McDonald A, Riha S, DiTommaso A, DeGaetano A (2009) Climate change and the geography of weed damage: analysis of US maize systems suggests the potential for significant range transformations. Agric Ecosyst Environ 130:131–140

    Article  Google Scholar 

  75. McDowell WG, Benson AJ, Byers JE (2014) Climate controls the distribution of a widespread invasive species: implications for future range expansion. Freshw Biol 59:847–857

    Article  Google Scholar 

  76. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. Measey GJ, Rödder D, Green SL, Kobayashi R, Lillo F, Lobos G, Rebelo R, Thirion J-M (2012) Ongoing invasions of the African clawed frog, Xenopus laevis: a global review. Biol Invasions 14:2255–2270

    Article  Google Scholar 

  78. Mika AM, Weiss RM, Olfert O, Hallett RH, Newman JA (2008) Will climate change be beneficial or detrimental to the invasive swede midge in North America? Contrasting predictions using climate projections from different general circulation models. Glob Change Biol 14:1721–1733

    Article  Google Scholar 

  79. Miller DJ (1989) Introductions and extinction of fish in the African great lakes. Trends Ecol Evol 4:56–59

    CAS  PubMed  Article  Google Scholar 

  80. Monahan WB, Tingley MW (2012) Niche tracking and rapid establishment of distributional equilibrium in the house sparrow show potential responsiveness of species to climate change. PLoS ONE 7(7):e42097

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Montana Department of Agriculture (2017) 2017 Montana State Noxious Weed List. https://agr.mt.gov/Portals/168/Documents/Weeds/2017%20Noxious%20Weed%20List.pdf. Accessed 23 Apr 2019

  82. Mote PW (2006) Climate-driven variability and trends in mountain snowpack in western North America. J Clim 19:6209–6220

    Article  Google Scholar 

  83. Mote PW, Salathé EP (2010) Future climate in the Pacific Northwest. Clim Change 102:29–50

    Article  Google Scholar 

  84. Mote PW, Abatzoglou JT, Kunkel KE (2013) Climate-variability and change in the past and the future. In: Dalton MM, Mote PW, Snover AK (eds) Climate change in the Northwest: implications for our landscapes, waters, and communities. Island Press, Washington

    Google Scholar 

  85. Mote PW, Li S, Lettenmaier DP, Xiao M, Engel R (2018) Dramatic declines in snowpack in the western US. NPJ Clim Atmos Sci 1:2

    Article  Google Scholar 

  86. Muhlfeld CC, Kovach RP, Al-Chokhachy R, Amish SJ, Kershner JL, Leary RF, Lowe WH, Luikart G, Matson P et al (2017) Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. Glob Change Biol 23:4663–4674

    Article  Google Scholar 

  87. Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC, Leary RF, Lowe WH, Luikart G, Allendorf FW (2014) Invasive hybridization in a threatened species is accelerated by climate change. Nat Clim Change 4:620–624

    Article  Google Scholar 

  88. Nghiem LTP, Soliman T, Yeo DCJ, Tan HTW, Evans TA, Mumford JD, Keller RP, Baker RHA, Corlet RT, Carrasco LR (2013) Economic and environmental impacts of harmful non-indigenous species in southeast Asia. PLoS ONE 8(8):e71255

    CAS  PubMed Central  Article  Google Scholar 

  89. Olfert O, Weiss RM, Elliott RH (2016) Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. Can Entomol 148:52–67

    Article  Google Scholar 

  90. Oregon Department of Agriculture (2017) Noxious weed laws and lists. https://www.oregon.gov/ODA/programs/Weeds/OregonNoxiousWeeds/Pages/Law.aspx. Accessed 23 Apr 2019

  91. Parker I, Simberloff D, Lonsdale W, Goodell K, Wonham M, Kareiva P, Williamson M et al (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  92. Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214

    PubMed  Article  CAS  Google Scholar 

  93. Pederson GT, Gray ST, Woodhouse CA et al (2011) The unusual nature of recent snowpack declines in the North American Cordillera. Science 333:332–335

    CAS  PubMed  Article  Google Scholar 

  94. Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24:497–504

    PubMed  Article  Google Scholar 

  95. Perkins TA, Phillips BL, Basket ML, Hastings A (2013) Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol Lett 16:1079–1087

    PubMed  Article  Google Scholar 

  96. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  97. Potter KJB, Kriticos DJ, Watt MS, Leriche A (2009) The current and future potential distribution of Cytisus scoparius: a weed of pastoral systems, natural ecosystems and plantation forestry. Weed Res 49:271–282

    Article  Google Scholar 

  98. Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci 107(27):12157–12162

    PubMed  Article  Google Scholar 

  99. Rahel FJ, Bierwagen B, Taniguchi Y (2008) Managing aquatic species of conservation concern in the face of climate change and invasive species. Biol Cons 22:551–561

    Article  Google Scholar 

  100. Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

    PubMed  Article  Google Scholar 

  101. Rasmussen K, Thyrring J, Muscarella R, Borchsenius F (2017) Climate-change-induced range shifts of three allergenic ragweeds (Ambrosia L.) in Europe and their potential impact on human health. PeerJ 5:e3104

    PubMed  PubMed Central  Article  Google Scholar 

  102. Régnière J, Nealis V, Porter K (2009) Climate suitability and management of the gypsy moth invasion into Canada. Biol Invasions 11:135–148

    Article  Google Scholar 

  103. Richter R, Berger UE, Dullinger S, Essl F, Leitner M, Smith M, Vogl G (2013) Spread of invasive ragweed: climate change, management and how to reduce allergy costs. J Appl Ecol 50:1422–1430

    Article  Google Scholar 

  104. Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM, Carpintero S, Espadaler X, Gómez C, Guénard B, Hartley S, Krushelnycky P, Lester PJ, McGeoch MA, Menke SB, Pedersen JS, Pitt JPW, Reyes J, Sanders NJ, Suarez AV, Touyama Y, Ward D, Ward PS, Worner SP (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci 108:220–225

    CAS  PubMed  Article  Google Scholar 

  105. Ruiz-Navarro A, Gillingham PK, Britton JR (2016) Predicting shifts in the climate space of freshwater fishes in Great Britain due to climate change. Biol Conserv 203:33–42

    Article  Google Scholar 

  106. Sanderson BL, Barnas KA, Rub AMW (2009) Nonindigenous species of the PNW: an overlooked risk to endangered salmon? Bioscience 59:245–256

    Article  Google Scholar 

  107. Scott D, Poynter M (1991) Upper temperature limits for trout in New Zealand and climate change. Hydrobiologia 222:147–151

    Article  Google Scholar 

  108. Sharma S, Jackson DA, Minns CK, Shuter BJ (2007) Will northern fish populations be in hot water because of climate change? Glob Change Biol 13:2052–2064

    Article  Google Scholar 

  109. Sheppard CS, Stanley MC (2014) Does elevated temperature and doubled CO2 increase growth of three potentially invasive plants? Invasion Plant Sci Manag 7:235–246

    Google Scholar 

  110. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M et al (2013) Impacts of biological invasions: what's what and the way forward. Trends Ecol Evol 28:58–66

    PubMed  Article  Google Scholar 

  111. Sinokrot BA, Stefan HG, McCormick JH, Eaton JG (1995) Modeling of climate change effects on stream temperatures and fish habitats below dams and near groundwater inputs. Clim Change 30:181–200

    Article  Google Scholar 

  112. Smith AL, Hweitt N, Klenk N, Basely DR, Yan N, Wood S, Heriques I, MacLellan JI, Lipsig-Mumme C (2012) Effects of climate change on the distribution of invasive alien species in Canada: a knowledge synthesis of range change projections in a warming world. Environ Rev 20:1–16

    Article  Google Scholar 

  113. Snover AK, Glick P, Capalbo SM (2013) Introduction: the changing Northwest. In: Dalton MM, Mote PW, Snover AK (eds) Climate change in the Northwest: implications for our landscapes, waters, and communities. Island Press, Washington, DC, pp 1–24

    Google Scholar 

  114. Snow NP, Jarzyna MA, VerCauteren KC (2017) Interpreting and predicting the spread of invasive wild pigs. J Appl Ecol 54:2022–2032

    Article  Google Scholar 

  115. Sorte CJB, Ibañez I, Blumenthal DM, Molinari NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD et al (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett 16:261–270

    PubMed  Article  Google Scholar 

  116. Stephens AEA, Kriticos DJ, Leriche A (2007) The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull Entomol Res 97:369–378

    CAS  PubMed  Article  Google Scholar 

  117. Stewart IT, Cayan DR, Dettinger MD (2005) Changes toward earlier streamflow timing across western North America. J Clim 18:1136–1155

    Article  Google Scholar 

  118. Storkey J, Stratonovitch P, Chapman DS, Vidotto F, Semenov MA (2014) A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS ONE 9(2):e88156

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. Svobodová E, Trnka M, Dubrovský M, Semerádová D, Eitzinger J, Štěpánek P, Žalud Z (2014) Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Manag Sci 70:708–715

    PubMed  Article  CAS  Google Scholar 

  120. Tougas-Tellier MA, Morin J, Hatin D, Lavoie C (2015) Freshwater wetlands: fertile grounds for the invasive Phragmites australis in a climate change context. Ecol Evol 5:3421–3435

    PubMed  PubMed Central  Article  Google Scholar 

  121. Tobin PC, Gray DR, Liebhold AM (2014) Supraoptimal temperatures influence the range dynamics of a non-native insect. Divers Distrib 20:813–823

    Article  Google Scholar 

  122. Trnka M, Muška F, Semerádová D, Dubrovksý M, Kocmánková E, Žalud Z (2007) European Corn Borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol Model 207:61–84

    Article  Google Scholar 

  123. Vanhanen H, Veleli TO, Päivinen S, Kellomäki S, Niemelä P (2007) Climate change and range shifts in two insect defoliators: Gypsy moth and nun moth—a model study. Silva Fenn 41:621–638

    Article  Google Scholar 

  124. Van Zuiden TM, Sharma S (2016) Examining the effects of climate change and species invasions on Ontario walleye populations: can walleye beat the heat? Divers Distrib 22:1069–1079

    Article  Google Scholar 

  125. Van Zuiden TM, Chen MM, Stefanoff S, Lopez L, Sharma S (2016) Projected impacts of climate change on three freshwater fishes and potential novel competitive interactions. Divers Distrib 22:603–614

    Article  Google Scholar 

  126. Valéry L, Fritz H, Lefeuvere J-C, Simberloff D (2008) In search of a real definition of the biological phenomenon itself. Biol Invasions 10:1345–1351

    Article  Google Scholar 

  127. Vilà M, Weiner J (2004) Are invasive plant species better competitors than native plant species? Evidence from pairwise experiments. Oikos 105:229–238

    Article  Google Scholar 

  128. Vogl G, Smolik M, Stadler LM, Leitner M, Essl F, Dullinger S, Kleinbauer I, Peterseil J (2008) Modelling the spread of ragweed: effects of habitat, climate change and diffusion. Eur Phys J Spec Top 161:167–173

    Article  Google Scholar 

  129. Von der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996

    PubMed  Article  Google Scholar 

  130. Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zolbel M et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693

    PubMed  PubMed Central  Article  Google Scholar 

  131. Washington State Noxious Weed Control Board (2017) Printable noxious weed list. https://www.nwcb.wa.gov/printable-noxious-weed-list. Accessed 23 Apr 2019

  132. Wenger SJ, Isaak DJ, Luce CH, Neville HM, Faush KD, Dunham JB, Dauwalter DC, Younkg MK, Elsner MM, Rieman BE, Hamlet AF, Williams JE (2011) Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc Natl Acad Sci USA 108:14175–14180

    CAS  PubMed  Article  Google Scholar 

  133. West AM, Kumar S, Wakie T, Brown CS, Stohlgren TJ, Laituri M, Bromberg J (2015) Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park. PLoS ONE 10(2):e0117893

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–943

    CAS  PubMed  Article  Google Scholar 

  135. Western Governors’ Association (2017) WGA’s “Top 50 Invasive Species in the West” offers first regional report. https://westgov.org/news/wgas-top-50-invasive-species-in-the-west-offers-first-regional-report. Accessed 23 Apr 2019

  136. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615

    Article  Google Scholar 

  137. Wilhelm S, Adrian R (2007) Long-term response of Dreissena polymorpha larvae to physical and biological forcing in a shallow lake. Oecologia 151:104–114

    PubMed  Article  Google Scholar 

  138. Williams F, Eschen R, Harris A, Djeddour D, Pratt C, Shaw RS, Varia S, Lamontagne-Godwin J, Thomas SE, Murphy ST (2010) The economic cost of invasive non-native species on Great Britain. CABI Project No. VM10066. CABI, Egham

    Google Scholar 

  139. Williams DW, Liebhold AM (1995) Forest defoliators and climatic change: potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera Lymantriidae). Environ Entomol 24:1–9

    Article  Google Scholar 

  140. Williams SE, Shoo LP, IsaacJL HAA, Langham G (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS ONE 6(12):e325

    Article  CAS  Google Scholar 

  141. Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B 365:2093–2106

    Article  Google Scholar 

  142. Young MK, Isaak DJ, McKelvey KS, Wilcox TM, Pilgrim KL, Carim KJ, Campbell MR, Corsi MP, Horan DL, Nagel DE, Schwartz MK (2016) Climate, demography, and zoogeography predict introgression thresholds in salmonid hybrid zones in Rocky Mountain streams. PLoS ONE 11(12):e0167711

    Article  CAS  Google Scholar 

  143. Zhu J, Xu X, Tao Q, Yi P, Yu D, Xu X (2017) High invasion potential of Hydrilla verticillata in the Americas predicted using ecological niche modeling combined with genetic data. Ecol Evol 7:4982–4990

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the U.S. Geological Survey Northwest Climate Adaptation Science Center. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Gervais.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gervais, J.A., Kovach, R., Sepulveda, A. et al. Climate-induced expansions of invasive species in the Pacific Northwest, North America: a synthesis of observations and projections. Biol Invasions 22, 2163–2183 (2020). https://doi.org/10.1007/s10530-020-02244-2

Download citation

Keywords

  • Invasive species
  • Climate change
  • Global change
  • Terrestrial
  • Aquatic
  • Pacific northwest