Invasion of Trichoferus campestris (Coleoptera: Cerambycidae) into the United States characterized by high levels of genetic diversity and recurrent introductions

Abstract

Genetic variability of invasive pests informs us of fundamental aspects of the invasion, which help leverage limited resources for more efficient pest management. This is particularly important for managing species with invasive populations fueled by recurrent introductions. We present the first phylogeographic study of the velvet longhorned beetle (Trichoferus campestris [Faldermann]), a highly polyphagous wood-boring insect native to Asia. It attacks many ecologically and economically important tree species and has repeatedly invaded Europe and North America in recent decades. Despite the apparent threat posed by this pest, little work has been attempted to characterize genetic variability of T. campestris. One hurdle is the lack of genetic data beyond the “universal” COI barcode. Here we designed primer sequences to amplify five additional mitochondrial protein-coding genes for T. campestris (COII, COIII, Cytb, ND2, and ND4). We included specimens collected from domestic locations in the Unites States (U.S.) as well as samples intercepted in solid wood packaging material (WPM) at U.S. ports of entry. Phylogenetic analyses recovered three mitochondrial lineages, all including both domestic collections and port-interceptions. Our results demonstrated high levels of haplotype diversity among invasive populations of T. campestris. Specimens collected from the same geographical vicinity can be placed into different lineages. Species delimitation analyses further suggest presence of multiple molecular operational taxonomic units, which could complicate regulatory policies. We evaluated mechanisms that underlie the increasing number of T. campestris individuals and populations detected in the U.S. Results support the hypothesis of independent introductions through WPM, but are inconsistent with secondary invasions through the bridgehead effect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdelkrim J, Aznar-Cormano L, Buge B, Fedosov A, Kantor Y, Zaharias P, Puillandre N (2018) Delimiting species of marine gastropods (Turridae, Conoidea) using RAD sequencing in an integrative taxonomy framework. Mol Ecol 27:4591–4611

    CAS  PubMed  Google Scholar 

  2. Bertelsmeier C, Keller L (2018) Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol Evol 33:527–534

    PubMed  Google Scholar 

  3. Bradshaw CJ, Leroy B, Bellard C, Roiz D, Albert C, Fournier A, Barbet-Massin M, Salles JM, Simard F, Courchamp F (2016) Massive yet grossly underestimated global costs of invasive insects. Nat Commun 7:12986

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown SD, Collins RA, Boyer S, Lefort MC, Malumbres-Olarte J, Vink CJ, Cruickshank RH (2012) Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 12:562–565

    PubMed  Google Scholar 

  5. Bullas-Appleton E, Kimoto T, Turgeon JJ (2014) Discovery of Trichoferus campestris (Coleoptera: Cerambycidae) in Ontario, Canada and first host record in North America. Can Entomol 146:111–116

    Google Scholar 

  6. Canadian Food Inspection Agency (CFIA) (2017) D-02-12: Phytosanitary import requirements for non-processed wood and other wooden products, bamboo and bamboo products, originating from all areas other than the continental United States (US). http://www.inspection.gc.ca/plants/plant-pests-invasive-species/directives/forestry/d-02-12/eng/1488215831209/1488215831755. Accessed 4 April 2019

  7. Center for Environmental and Research System (CERIS) (2018) Pest tracker exotic pest reporting. Purdue University. http://pest.ceris.purdue.edu. Accessed 4 April 2019

  8. Collins RA, Cruickshank RH (2012) The seven deadly sins of DNA barcoding. Mol Ecol Resour 13:969–975

    PubMed  Google Scholar 

  9. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9:72

    Google Scholar 

  10. Dascălu MM, Serafim R, Lindelöw A (2013) Range expansion of Trichoferus campestris (Faldermann) (Coleoptera: Cerambycidae) in Europe with the confirmation of its presence in Romania. Entomol Fenn 24:142–146

    Google Scholar 

  11. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    CAS  PubMed  Google Scholar 

  12. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Bio 7:214

    Google Scholar 

  13. Ebbs ET, Loker ES, Brant SV (2018) Phylogeography and genetics of the globally invasive snail Physa acuta Draparnaud 1805, and its potential to serve as an intermediate host to larval digenetic trematodes. BMC Evol Biol 18:103

    PubMed  PubMed Central  Google Scholar 

  14. Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE, Glenn TC, Zhong B, Wu S, Lemmon EM, Lemmon AR, Leaché AD, Liu L, Davis CC (2016) Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol Phylogene Evol 94:447–462

    Google Scholar 

  15. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    PubMed  Google Scholar 

  16. European and Mediterranean Plant Protection Organization (EPPO) (2009) Hesperophanes campestris. Eur Mediterr Plant Prot Organ Bull 39:51–54

    Google Scholar 

  17. Ficetola GF, Bonin A, Miaud C (2008) Population genetics reveals origin and number of founders in a biological invasion. Mol Ecol 17:773–782

    CAS  PubMed  Google Scholar 

  18. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  19. Frey JE, Guillén L, Frey B, Samietz J, Rull J, Aluja M (2013) Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation. BMC Evol Biol 13:1

    Google Scholar 

  20. Grebennikov VV, Gill BD, Vigneault R (2010) Trichoferus campestris (Faldermann) (Coleoptera: Cerambycidae), an Asian woodboring beetle recorded in North America. Coleopt Bull 64:13–21

    Google Scholar 

  21. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  PubMed  Google Scholar 

  22. Haack RA (2006) Exotic bark and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can J For Res 36:269–288

    Google Scholar 

  23. Haack RA, Petrice TR, Wiedenhoeft AC (2010) Incidence of bark- and wood-boring insects in firewood: a survey at Michigan’s Mackinac Bridge. J Econ Entomol 103:1682–1692

    PubMed  Google Scholar 

  24. Haack RA, Britton KO, Brockerhoff EG, Cavey JF, Garrett LJ, Kimberley M, Lowenstein F, Nuding A, Olson LJ, Turner J, Vasilaky KN (2014) Effectiveness of the international phytosanitary standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLoS ONE 9:e96611

    PubMed  PubMed Central  Google Scholar 

  25. Hayes KA, Thiengo SC, Cowie RH (2009) A global phylogeny of apple snails: Gondwanan origin, generic relationships and the influence of outgroup choice (Caenogastropoda: Ampullariidae). Biol J Linn Soc 98:61–76

    Google Scholar 

  26. Iwata R, Yamada F (1990) Notes on the biology of Hesperophanes campestris (Faldermann) (Col., Cerambycidae), a drywood borer in Japan. Mater Org 25:305–313

    Google Scholar 

  27. Jackson L, Molet T (2014) Exotic wood borer/bark beetle survey reference. Cooperative Agricultural Pest Survey, United States Department of Agriculture. http://download.ceris.purdue.edu/file/3290. Accessed 4 April 2019

  28. Krishnankutty SM, Bigsby K, Hastings J, Takeuchi Y, Wu Y., Lingafelter SW, Nadel H, Myers SW, Ray AM (in press) Predicting establishment potential of an invasive wood-boring beetle, Trichoferus campestris (Coleoptera: Cerambycidae) in the US. Ann Entomol Soc Am

  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Bio Evol 35:1547–1549

    CAS  Google Scholar 

  30. Leaché AD, Fujita MK, Minin VN, Bouckaert RR (2014) Species delimitation using genome-wide SNP data. Syst Biol 63:534–542

    PubMed  PubMed Central  Google Scholar 

  31. Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Google Scholar 

  32. Luo A, Ling C, Ho SY, Zhu CD (2018) Comparison of methods for molecular species delimitation across a range of speciation scenarios. Syst Biol 67:830–846

    PubMed  PubMed Central  Google Scholar 

  33. National Research Council (2002) Predicting invasions of nonindigenous plants and plant pests. The National Academies Press, Washington, DC. https://doi.org/10.17226/10259. Accessed 4 April 2019

  34. Nosil P, Crespi BJ, Sandoval C (2002) Host–plant adaptation drives the parallel evolution of reproductive isolation. Nature 417:441–443

    Google Scholar 

  35. Pennacchio F, Marianelli L, Binazzi F, Francardi V, Paoli F, Griffo R, Roversi PF (2016) First interception of Trichoferus campestris (Faldermann, 1835) (Coleoptera Cerambycidae Cerambycinae) in Italy. Redia 99:59–62

    Google Scholar 

  36. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–66

    Google Scholar 

  37. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609

    PubMed  Google Scholar 

  38. Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21:1864–1877

    CAS  PubMed  Google Scholar 

  39. Rambaut A, Drummond AJ (2013) Tracer: MCMC trace analysis tool, Version 1.6. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 4 April 2019

  40. Ratnasingham S, Hebert PD (2007) BOLD: the Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7:355–364

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ratnasingham S, Hebert PD (2013) DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8:e66213

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ray AM, Francese JA, Zou Y, Watson K, Crook DJ, Millar JG (2019) Isolation and identification of a male-produced aggregation sex pheromone for the velvet longhorned beetle, Trichoferus campestris. Sci Rep 9:4459

    PubMed  PubMed Central  Google Scholar 

  43. Renner MA, Heslewood MM, Patzak SD, Schafer-Verwimp A, Heinrichs J (2017) By how much do we underestimate species diversity of liverworts using morphological evidence? An example from Australasian Plagiochila (Plagiochilaceae: Jungermanniopsida). Mol Phylogenet Evol 107:576–593

    PubMed  Google Scholar 

  44. Roe AD, Torson AS, Bilodeau G, Bilodeau P, Blackburn GS, Cui M, Cusson M, Doucet D, Griess VC, Lafond V, Paradis G, Porth I, Prunier J, Srivastava V, Tremblay E, Uzunovic A, Yemshanov D, Hamelin RC (2018) Biosurveillance of forest insects: part I-integration and application of genomic tools to the surveillance of non-native forest insects. J Pest Sci 92:51–70

    Google Scholar 

  45. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  46. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302

    CAS  Google Scholar 

  47. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Google Scholar 

  48. San Jose M, Doorenweerd C, Leblanc L, Barr N, Geib S, Rubinoff D (2018) Tracking the origins of fly invasions using mitochondrial haplotype diversity to identify potential source populations in two genetically intertwined fruit Fly species (Bactrocera carambolae and Bactrocera dorsalis [Diptera: Tephritidae]). J Econ Entomol 111:2914–2926

    CAS  PubMed  Google Scholar 

  49. Schindel DE, Miller SE (2005) DNA barcoding a useful tool for taxonomists. Nature 435:17

    CAS  PubMed  Google Scholar 

  50. Springer MS, Gatesy J (2016) The gene tree delusion. Mol Phylogenet Evol 94:1–33

    PubMed  Google Scholar 

  51. Sukumaran J, Knowles LL (2017) Multispecies coalescent delimits structure, not species. Proc Natl Acad Sci USA 114:1607–1612

    CAS  PubMed  Google Scholar 

  52. Švácha P, Danilevsky ML (1988) Cerambycoid larvae of Europe and Soviet Union (Coleoptera, Cerambycoidea). Part II. Acta Univ Carol Biol 31:121–284

    Google Scholar 

  53. Tajima F (1993) Simple methods for testing molecular clock hypothesis. Genetics 135:599–607

    CAS  PubMed  PubMed Central  Google Scholar 

  54. The Department for Environmental, Food and Rural Affairs (Defra) (2015) Rapid pest risk assessment for Trichoferus campestris version 2. The Food and Environment Research Agency (UK). https://secure.fera.defra.gov.uk/phiw/riskRegister/downloadExternalPra.cfm?id=3931. Accessed 4 April 2019

  55. Tobin PC, Diss-Torrance A, Blackburn LM, Brown BD (2010) What does “local” firewood buy you? Managing the risk of invasive species introduction. J Econ Entomol 103:1569–1576

    PubMed  Google Scholar 

  56. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucl Acids Res 35:W71–W74

    PubMed  Google Scholar 

  57. Watson K, Pratt CA, Caputo J (2015) Total records of velvet longhorn beetle Trichoferus campestris Faldermann (Coleoptera, Cerambycidae). Utah Department of Agriculture and Food, Plant Industry and Conservation Division. https://ag.utah.gov/documents/Insect_Velvet_Longhorn_Beetle.pdf. Accessed 4 April 2019

  58. Wu Y, Trepanowski NF, Molongoski JJ, Reagel PF, Lingafelter SW, Nadel H, Myers SW, Ray AM (2017) Identification of wood-boring beetles (Cerambycidae and Buprestidae) intercepted in trade-associated solid wood packaging material using DNA barcoding and morphology. Sci Rep 7:40316

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Kapli R, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the efforts of CBP agriculture specialists and APHIS identifiers at participating ports that collected, packaged, and sent insect and wood samples to the Otis Laboratory. We thank Scott Pfister, Joe Francese, and Dave Cowan (USDA APHIS) and domestic cooperators who have provided or facilitated transfer of specimens. Emily Franzen and student research assistants (Xavier University), Kristopher Watson and Joey Caputo (Utah Department of Food and Agriculture), and Ethan Adams are thanked for assistance with field work. We thank Nevada Trepanowski and Marjorie Palmeri for technical assistance. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA). USDA is an equal opportunity provider and employer. The findings and conclusions in this preliminary publication have not been formally disseminated by the U.S. Department of Agriculture and should not be construed to represent any agency determination or policy. This material was made possible, in part, by a Cooperative Agreement from the United States Department of Agriculture’s Animal and Plant Health Inspection Service (APHIS). It may not necessarily express APHIS’ views.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunke Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Krishnankutty, S.M., Vieira, K.A. et al. Invasion of Trichoferus campestris (Coleoptera: Cerambycidae) into the United States characterized by high levels of genetic diversity and recurrent introductions. Biol Invasions 22, 1309–1323 (2020). https://doi.org/10.1007/s10530-019-02182-8

Download citation

Keywords

  • Velvet longhorned beetle
  • Haplotype diversity
  • Species delimitation
  • Bridgehead effect
  • Wood packaging material
  • Invasion pathway