Advances and challenges in modelling the impacts of invasive alien species on aquatic ecosystems

  • X. CorralesEmail author
  • S. Katsanevakis
  • M. Coll
  • J. J. Heymans
  • C. Piroddi
  • E. Ofir
  • G. Gal


Invasive alien species (IAS) have become an important driver of biodiversity change and exert severe pressure on natural ecosystems. The development of modelling approaches to assess and predict their distributions and impacts, and evaluate management options has increased substantially. We reviewed these modelling approaches, applied in aquatic ecosystems, using a systematic review approach in line with the preferred reporting items for systematic reviews and meta-analyses. According to our results, multispecies/ecosystem models dominated the applications, with dynamic and non-spatial models being the most prevalent. Most of the models included an additional stressor, mainly fisheries, climate change or nutrient loading. The impacts on biota focused on predation, but also on competition and ecosystem functioning, while the impacts on ecosystem services focused on food provision and water purification. At species/population level, most of the studies reported negative impacts; while at multispecies/ecosystem level, negative and both negative and positive impacts were similarly represented. We reflect on the ability of current models to assess different impacts of IAS populations and highlight the need to advance their capabilities to predict future impacts. Further development of models that allow capturing the arrival, establishment and spread of IAS and assess their impacts in an integrated way is still needed. Spatial–temporal modelling techniques bridging with novel analytical capabilities (such as environmental DNA to investigate the presence of IAS and metabarcoding and machine learning to predict future trophic behavior and distributions) may be the key for future achievement.


Invasive alien species Impacts Modelling Marine ecosystems Freshwater ecosystems PRISMA 



XC and EO were supported by an IOLR scholarship under the DESSIM project (“A Decision Support System for the management of Israel’s Mediterranean Exclusive Economic Zone”). MC was partially funded by the European Commission through the European Union´s Horizon research program Grant Agreement No. 689518 for the MERCES project. This study was partially funded by COST (European Cooperation in Science and Technology) Action 15121 “Advancing marine conservation in the European and contiguous seas” (MarCons—; Katsanevakis et al. (2017))—supported by the Horizon 2020 Framework Programme for research and innovation. XC thanks Daniel Vilas for help with Fig. 2.

Supplementary material

10530_2019_2160_MOESM1_ESM.docx (49 kb)
Supplementary material 1 (DOCX 48 kb)
10530_2019_2160_MOESM2_ESM.xlsx (58 kb)
Supplementary material 2 (XLSX 58 kb)
10530_2019_2160_MOESM3_ESM.docx (109 kb)
Supplementary material 3 (DOCX 109 kb)
10530_2019_2160_MOESM4_ESM.docx (27 kb)
Supplementary material 4 (DOCX 27 kb)


  1. Akoglu E, Libralato S et al (2015) EwE-F 1.0: an implementation of Ecopath with Ecosim in Fortran 95/2003 for coupling and integration with other models. Geosci Model Dev 8(8):2687–2699CrossRefGoogle Scholar
  2. Albouy C, Guilhaumon F et al (2011) Predicting trophic guild and diet overlap from functional traits: statistics, opportunities and limitations for marine ecology. Mar Ecol Prog Ser 436:17–28CrossRefGoogle Scholar
  3. Albouy C, Velez L et al (2014) From projected species distribution to food-web structure under climate change. Glob Change Biol 20(3):730–741CrossRefGoogle Scholar
  4. Amundsen PA, Lafferty KD et al (2013) New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning. Oecologia 171(4):993–1002CrossRefGoogle Scholar
  5. Anderson KR, Chapman DC et al (2015) Suitability of Lake Erie for bigheaded carps based on bioenergetic models and remote sensing. J Great Lakes Res 41(2):358–366CrossRefGoogle Scholar
  6. Aravena G, Villate F et al (2009) Response of Acartia populations to environmental variability and effects of invasive congenerics in the estuary of Bilbao, Bay of Biscay. Estuar Coast Shelf Sci 83(4):621–628CrossRefGoogle Scholar
  7. Arhonditsis GB, Brett MT (2004) Evaluation of the current state of mechanistic aquatic biogeochemical modeling. Mar Ecol Prog Ser 271:13–26CrossRefGoogle Scholar
  8. Arias-González JE, González-Gándara C et al (2011) Predicted impact of the invasive lionfish Pterois volitans on the food web of a Caribbean coral reef. Environ Res 111(7):917–925CrossRefGoogle Scholar
  9. Bajer PG, Beck MW et al (2016) Biological invasion by a benthivorous fish reduced the cover and species richness of aquatic plants in most lakes of a large North American ecoregion. Glob Change Biol 22(12):3937–3947CrossRefGoogle Scholar
  10. Bax N, Williamson A et al (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27(4):313–323CrossRefGoogle Scholar
  11. Belmaker J, Parravicini V et al (2013) Ecological traits and environmental affinity explain Red Sea fish introduction into the Mediterranean. Glob Change Biol 19(5):1373–1382CrossRefGoogle Scholar
  12. Beville ST, Kerr GN et al (2012) Valuing impacts of the invasive alga Didymosphenia geminata on recreational angling. Ecol Econ 82:1–10CrossRefGoogle Scholar
  13. Bierman VJ, Kaur J et al (2005) Modeling the role of zebra mussels in the proliferation of blue-green algae in Saginaw Bay, Lake Huron. J Great Lakes Res 31(1):32–55CrossRefGoogle Scholar
  14. Blamey LK, Plagányi ÉE et al (2013) Modeling a regime shift in a kelp forest ecosystem caused by a lobster range expansion. Bull Mar Sci 89(1):347–375CrossRefGoogle Scholar
  15. Blamey LK, Plagányi TE et al (2014) Was overfishing of predatory fish responsible for a lobster-induced regime shift in the Benguela? Ecol Model 273:140–150CrossRefGoogle Scholar
  16. Bocaniov SA, Smith REH et al (2014) The nearshore shunt and the decline of the phytoplankton spring bloom in the Laurentian Great Lakes: insights from a three-dimensional lake model. Hydrobiologia 731(1):151–172CrossRefGoogle Scholar
  17. Bourne SD, Hudson J, Holman LE, Rius M (2018) Marine invasion genomics: revealing ecological and evolutionary consequences of biological invasions. In: Rajora OM, Oleksiak MF (eds) Population genomics: marine organisms. Springer, BerlinGoogle Scholar
  18. Brose U, Dunne JA (2009) Modelling the dynamics of complex food webs. Community ecology: processes, models, and applications. Oxford University Press, OxfordGoogle Scholar
  19. Buchadas A, Vaz AS et al (2017) Dynamic models in research and management of biological invasions. J Environ Manag 196:594–606CrossRefGoogle Scholar
  20. Caldow RWG, Stillman RA et al (2007) Benefits to shorebirds from invasion of a non-native shellfish. Proc R Soc B Biol Sci 274(1616):1449–1455CrossRefGoogle Scholar
  21. Carlsson NO, Sarnelle O et al (2009) Native predators and exotic prey–an acquired taste? Front Ecol Environ 7(10):525–532CrossRefGoogle Scholar
  22. CBD (2002) Sixth conference of the parties, the Hague, the Netherlands. 7–19 April 2002: decision VI/23: alien species that threaten ecosystems, habitats or species to which is annexed guiding principles for the prevention, introduction and mitigation of impacts of alien species that threaten ecosystems, habitats or species. Retrieved 3 May 2018
  23. Cha Y, Stow CA et al (2011) Do invasive mussels restrict offshore phosphorus transport in lake huron? Environ Sci Technol 45(17):7226–7231CrossRefGoogle Scholar
  24. Cha Y, Stow CA et al (2013) Impacts of dreissenid mussel invasions on chlorophyll and total phosphorus in 25 lakes in the USA. Freshw Biol 58(1):192–206CrossRefGoogle Scholar
  25. Chan FT, Briski E (2017) An overview of recent research in marine biological invasions. Springer, BerlinCrossRefGoogle Scholar
  26. Chipps SR, Wahl DH (2008) Bioenergetics modeling in the 21st century: reviewing new insights and revisiting old constraints. Trans Am Fish Soc 137(1):298–313CrossRefGoogle Scholar
  27. Christensen V, Walters CJ (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecol Model 172(2):109–139CrossRefGoogle Scholar
  28. Christensen V, Coll M et al (2014) Representing variable habitat quality in a spatial food web model. Ecosystems 17(8):1397–1412CrossRefGoogle Scholar
  29. Clavero M, Hermoso V et al (2013) Biodiversity in heavily modified waterbodies: native and introduced fish in Iberian reservoirs. Freshw Biol 58(6):1190–1201CrossRefGoogle Scholar
  30. Coll M, Pennino MG et al (2019) Predicting marine species distributions: complementary food web and Bayesian hierarchical modelling approaches. Ecol Model 405:86–101CrossRefGoogle Scholar
  31. Collie JS, Botsford LW et al (2014) Ecosystem models for fisheries management: finding the sweet spot. Fish Fish 14:101–125Google Scholar
  32. Cook GS, Fletcher PJ et al (2014) Towards marine ecosystem based management in South Florida: investigating the connections among ecosystem pressures, states, and services in a complex coastal system. Ecol Ind 44:26–39CrossRefGoogle Scholar
  33. Corrales X, Gal G et al (2014) Modeling the alien species impacts in marine ecosystems. In: Steenbeek J, Piroddi C, Coll M, Heymans JJ, Villasante S, Christensen V (eds) Ecopath 30 years conference proceedings: extended abstracts. Fisheries centre research reports 22(3) (ISSN 1198-6727). 237 pp. Fisheries Centre, University of British Columbia, Vancouver, pp 154–155Google Scholar
  34. Corrales X, Coll M et al (2017a) Hindcasting the dynamics of an Eastern Mediterranean marine ecosystem under the impacts of multiple stressors. Mar Ecol Prog Ser 580:17–36CrossRefGoogle Scholar
  35. Corrales X, Ofir E et al (2017b) Modeling the role and impact of alien species and fisheries on the Israeli marine continental shelf ecosystem. J Mar Syst 170:88–102CrossRefGoogle Scholar
  36. Corrales X, Coll M et al (2018) Future scenarios of marine resources and ecosystem conditions of the Eastern Mediterranean under impacts of fishing, alien species and ocean warming. Sci Rep 8:14284CrossRefPubMedPubMedCentralGoogle Scholar
  37. Correa C, Hendry AP (2012) Invasive salmonids and lake order interact in the decline of puye grande Galaxias platei in western Patagonia lakes. Ecol Appl 22(3):828–842CrossRefGoogle Scholar
  38. Courchamp F, Fournier A et al (2017) Invasion biology: specific problems and possible solutions. Trends Ecol Evol 32(1):13–22CrossRefGoogle Scholar
  39. Crane DP, Einhouse DW (2016) Changes in growth and diet of smallmouth bass following invasion of Lake Erie by the round goby. J Great Lakes Res 42(2):405–412CrossRefGoogle Scholar
  40. Crane DP, Farrell JM et al (2015) Trends in body condition of native piscivores following invasion of Lakes Erie and Ontario by the round goby. Freshw Biol 60(1):111–124CrossRefGoogle Scholar
  41. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion 1. Ecoscience 12(3):316–329CrossRefGoogle Scholar
  42. Cuddington K, Fortin M-J et al (2013) Process-based models are required to manage ecological systems in a changing world. Ecosphere 4(2):1–12CrossRefGoogle Scholar
  43. De Amorim SR, Umetsu CA et al (2015) Effects of a non native species of Poaceae on aquatic macrophyte community composition: a comparison with a native species. J Aquat Plant Manag 53(July):191–196Google Scholar
  44. Dick JT, Alexander ME et al (2014) Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol Invasions 16(4):735–753CrossRefGoogle Scholar
  45. Doney SC (1999) Major challenges confronting marine biogeochemical modeling. Global Biogeochem Cycles 13(3):705–714CrossRefGoogle Scholar
  46. Downing AS, Van Nes EH et al (2012) Collapse and reorganization of a food web of Mwanza Gulf, Lake Victoria. Ecol Appl 22(1):229–239CrossRefGoogle Scholar
  47. Dudgeon D, Arthington AH et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81(2):163–182CrossRefGoogle Scholar
  48. EMB (2019) Navigating the future V: marine science for a sustainable future. O. position paper 24 of the European Marine Board, Belgium. ISBN: 9789492043757. ISSN: 0167-9309Google Scholar
  49. Essl F, Bacher S et al (2018) Which taxa are alien? Criteria, applications, and uncertainties. Bioscience 68(7):496–509CrossRefGoogle Scholar
  50. Evans MR, Bithell M et al (2013) Predictive systems ecology. Proc R Soc B Biol Sci 280(1771):20131452CrossRefGoogle Scholar
  51. FAO (2008) Best practices in ecosystem modelling: modelling ecosystem interactions for informing an ecosystem approach to fisheries. Fisheries management—the ecosystem approach to fisheries, FAO technical guidelines for responsible fisheries. FAO, Rome, p 78Google Scholar
  52. Ferguson JM, Taper ML et al (2012) Mechanisms of coexistence between native bull trout (Salvelinus confluentus) and non-native lake trout (Salvelinus namaycush): inferences from pattern-oriented modeling. Can J Fish Aquat Sci 69(4):1–15CrossRefGoogle Scholar
  53. Ficetola GF, Miaud C et al (2008) Species detection using environmental DNA from water samples. Biol Lett 4(4):423–425CrossRefPubMedPubMedCentralGoogle Scholar
  54. Fishman DB, Adlerstein SA et al (2009) Causes of phytoplankton changes in Saginaw Bay, Lake Huron, during the zebra mussel invasion. J Great Lakes Res 35(4):482–495CrossRefGoogle Scholar
  55. Fogarty MJ (2013) The art of ecosystem-based fishery management. Can J Fish Aquat Sci 71(3):479–490CrossRefGoogle Scholar
  56. Foley CJ, Andree SR et al (2017) Quantifying the predatory effect of round goby on Saginaw Bay dreissenids. J Great Lakes Res 43(1):121–131CrossRefGoogle Scholar
  57. Fontaine TD, Stewart DJ (1992) Exploring the effects of multiple management objectives and exotic species on great lakes food webs and contaminant dynamics. Environ Manag 16(2):225–229CrossRefGoogle Scholar
  58. Fournier A, Penone C et al (2019) Predicting future invaders and future invasions. Proc Natl Acad Sci 116:7905–7910CrossRefGoogle Scholar
  59. Froese R, Pauly D (2017) FishBase. World Wide Web electronic publication. version (06/2017)
  60. Fulton EA (2010) Approaches to end-to-end ecosystem models. J Mar Syst 81(1):171–183CrossRefGoogle Scholar
  61. Fulton EA, Smith AD et al (2003) Effect of complexity on marine ecosystem models. Mar Ecol Prog Ser 253:1–16CrossRefGoogle Scholar
  62. Fulton EA, Smith ADM, Punt AE (2004a) Ecological indicators of the ecosystem effects of fishing. Final Report. Report No. R99/1546, Australian Fisheries Management Authority, CanberraGoogle Scholar
  63. Fulton EA, Smith AD et al (2004b) Effects of spatial resolution on the performance and interpretation of marine ecosystem models. Ecol Model 176(1):27–42CrossRefGoogle Scholar
  64. Gallardo B, Clavero M et al (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Change Biol 22(1):151–163CrossRefGoogle Scholar
  65. Ganju NK, Brush MJ et al (2016) Progress and challenges in coupled hydrodynamic-ecological estuarine modeling. Estuaries Coasts 39(2):311–332CrossRefGoogle Scholar
  66. Garcia SM, Zerbi A et al (2003) The ecosystem approach to fisheries: issues, terminology, principles, institutional foundations, implementation and outlook. FAO, RomeGoogle Scholar
  67. Glaser D, Rhea JR et al (2009) Model of zebra mussel growth and water quality impacts in the Seneca River, New York. Lake Reserv Manag 25(1):49–72CrossRefGoogle Scholar
  68. González-Moreno P, Lazzaro L et al (2019) Consistency of impact assessment protocols for non-native species. NeoBiota 44:1–25CrossRefGoogle Scholar
  69. Green SJ, Dulvy NK et al (2014) Linking removal targets to the ecological effects of invaders: a predictive model and field test. Ecol Appl 24(6):1311–1322CrossRefGoogle Scholar
  70. Gribben PE, Wright JT (2006) Sublethal effects on reproduction in native fauna: are females more vulnerable to biological invasion? Oecologia 149(2):352–361CrossRefGoogle Scholar
  71. Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17(1):22–27CrossRefGoogle Scholar
  72. Grosholz E, Lovell S et al (2011) Modeling the impacts of the European green crab on commercial shellfisheries. Ecol Appl 21(3):915–924CrossRefGoogle Scholar
  73. Grüss A, Rose KA et al (2017) Recommendations on the use of ecosystem modeling for informing ecosystem-based fisheries management and restoration outcomes in the Gulf of Mexico. Mar Coastal Fish 9:281–295CrossRefGoogle Scholar
  74. Gudimov A, Kim DK et al (2015) Examination of the role of dreissenids and macrophytes in the phosphorus dynamics of Lake Simcoe, Ontario, Canada. Ecol Inform 26(P3):36–53CrossRefGoogle Scholar
  75. Halpern BS, Frazier M et al (2015) Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun 6:7615CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hannon B, Ruth M (2014) Modeling dynamic biological systems. Modeling dynamic biological systems. Springer, Cham, pp 3–28Google Scholar
  77. Hao T, Elith J et al (2019) A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib 25(5):839–852CrossRefGoogle Scholar
  78. Hartman KJ, Kitchell JF (2008) Bioenergetics modeling: progress since the 1992 symposium. Trans Am Fish Soc 137(1):216–223CrossRefGoogle Scholar
  79. Havel JE, Kovalenko KE et al (2015) Aquatic invasive species: challenges for the future. Hydrobiologia 750(1):147–170CrossRefGoogle Scholar
  80. Hermoso V, Clavero M et al (2011) Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss. Ecol Appl 21(1):175–188CrossRefGoogle Scholar
  81. Heymans J, Skogen M et al (2018) Enhancing Europe’s capability in marine ecosystem modelling for societal benefit. Future Science Brief, vol 4, 32 ppGoogle Scholar
  82. Heymans JJ, Coll M et al (2014) Global patterns in ecological indicators of marine food webs: a modelling approach. PLoS ONE 9(4):e95845CrossRefPubMedPubMedCentralGoogle Scholar
  83. Heymans JJ, Coll M et al (2016) Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol Model 331:173–184CrossRefGoogle Scholar
  84. Higgins S, Vander Zanden M (2010) What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol Monogr 80(2):179–196CrossRefGoogle Scholar
  85. Higgins SN, Althouse B et al (2014) Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Ecology 95(8):2257–2267CrossRefGoogle Scholar
  86. Hollowed AB, Bax N et al (2000) Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? ICES J Mar Sci 57(3):707–719CrossRefGoogle Scholar
  87. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46(1):10–18CrossRefGoogle Scholar
  88. Isaev AV, Eremina TR et al (2016) Model estimates of the impact of bioirrigation activity of Marenzelleria spp. on the Gulf of Finland ecosystem in a changing climate. J Mar Syst 171:81–88CrossRefGoogle Scholar
  89. Jellyman PG, Harding JS (2016) Disentangling the stream community impacts of Didymosphenia geminata: how are higher trophic levels affected? Biol Invasions 18(12):3419–3435CrossRefGoogle Scholar
  90. Jenkins M (2003) Prospects for biodiversity. Science 302(5648):1175–1177CrossRefGoogle Scholar
  91. Jiang L, Xia M et al (2015) Biophysical modeling assessment of the drivers for plankton dynamics in dreissenid-colonized western Lake Erie. Ecol Model 308:18–33CrossRefGoogle Scholar
  92. Jiménez-Valverde A, Peterson AT et al (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13(12):2785–2797CrossRefGoogle Scholar
  93. Johnson TB, Bunnell DB et al (2005) A potential new energy pathway in central Lake Erie: the round goby connection. J Great Lakes Res 31:238–251CrossRefGoogle Scholar
  94. Jørgensen SE (2008) Overview of the model types available for development of ecological models. Ecol Model 215(1):3–9CrossRefGoogle Scholar
  95. Jørgensen SE, Fath B (2011) Fundamentals of ecological modelling: application in environmental management and research. Elsevier, AmsterdamGoogle Scholar
  96. Jørgensen SE, Fath BD et al (2011) A new ecology: systems perspective. Elsevier, AmsterdamGoogle Scholar
  97. Kao YC, Adlerstein S et al (2014) The relative impacts of nutrient loads and invasive species on a Great Lakes food web: an Ecopath with Ecosim analysis. J Great Lakes Res 40(S1):35–52CrossRefGoogle Scholar
  98. Kao Y-C, Adlerstein SA et al (2016) Assessment of top-down and bottom-up controls on the collapse of alewives (Alosa pseudoharengus) in Lake Huron. Ecosystems 19:1–29CrossRefGoogle Scholar
  99. Kateregga E, Sterner T (2009) Lake victoria fish stocks and the effects of water hyacinth. J Environ Dev 18(1):62–78CrossRefGoogle Scholar
  100. Katsanevakis S, Moustakas AA (2018) Uncertainty in marine invasion science. Front Mar Sci 5:38CrossRefGoogle Scholar
  101. Katsanevakis S, Smit AW et al (2012) Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquat Biol 16:31–52CrossRefGoogle Scholar
  102. Katsanevakis S, Zenetos A et al (2013) Invading European Seas: assessing pathways of introduction of marine aliens. Ocean Coast Manag 76:64–74CrossRefGoogle Scholar
  103. Katsanevakis S, Wallentinus I et al (2014) Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat Invasions 9:391–423CrossRefGoogle Scholar
  104. Katsanevakis S, Tempera F et al (2016) Mapping the impact of alien species on marine ecosystems: the Mediterranean Sea case study. Divers Distrib 22(6):694–707CrossRefGoogle Scholar
  105. Katsanevakis S, Mackelworth P et al (2017) Advancing marine conservation in European and contiguous seas with the MarCons Action. Res Ideas Outcomes 3:e11884CrossRefGoogle Scholar
  106. Kitchell JF, Cox SP et al (2000) Sustainability of the Lake Superior fish community: interactions in a food web context. Ecosystems 3(6):545–560CrossRefGoogle Scholar
  107. Knapp RA (2005) Effects of nonnative fish and habitat characteristics on lentic herpetofauna in Yosemite National Park, USA. Biol Cons 121(2):265–279CrossRefGoogle Scholar
  108. Knowler D (2005) Reassessing the costs of biological invasion: Mnemiopsis leidyi in the Black sea. Ecol Econ 52(2):187–199CrossRefGoogle Scholar
  109. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16(4):199–204CrossRefGoogle Scholar
  110. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298(5596):1233–1236CrossRefGoogle Scholar
  111. Kratina P, Mac Nally R et al (2014) Human-induced biotic invasions and changes in plankton interaction networks. J Appl Ecol 51(4):1066–1074CrossRefGoogle Scholar
  112. Lancelot C, Staneva J et al (2002) Modeling the impact of the human forcing on the ecological functioning of the northwestern Black Sea. Estuar Coast Shelf Sci 54:473–500CrossRefGoogle Scholar
  113. Langseth BJ, Rogers M et al (2012) Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models. Ecol Model 247:251–261CrossRefGoogle Scholar
  114. Larson ER, Gallagher RV et al (2014) Generalized “avatar” niche shifts improve distribution models for invasive species. Divers Distrib 20(11):1296–1306CrossRefGoogle Scholar
  115. Laruelle GG, Regnier P et al (2009) Benthic-pelagic coupling and the seasonal silic cycle in the bay of brest (France): new insights from a coupled physical-biological model. Mar Ecol Prog Ser 385:15–32CrossRefGoogle Scholar
  116. Lehuta S, Girardin R et al (2016) Reconciling complex system models and fisheries advice: practical examples and leads. Aquat Living Resour 29(2):208CrossRefGoogle Scholar
  117. Lercari D, Bergamino L (2011) Impacts of two invasive mollusks, Rapana venosa (Gastropoda) and Corbicula fluminea (Bivalvia), on the food web structure of the Río de la Plata estuary and nearshore oceanic ecosystem. Biol Invasions 13(9):2053–2061CrossRefGoogle Scholar
  118. Levin L, Crooks J (2011) Functional consequences of invasive species in coastal and estuarine systems. Treatise Estuar Coast Sci 7(3):17–51CrossRefGoogle Scholar
  119. Levins R (1966) The strategy of model building in population biology. Am Sci 54(4):421–431Google Scholar
  120. Light T, Marchetti MP (2007) Distinguishing between invasions and habitat changes as drivers of diversity loss among California’s freshwater fishes. Conserv Biol 21(2):434–446CrossRefGoogle Scholar
  121. Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23(4):399–417CrossRefGoogle Scholar
  122. Link JS (2004) A general model of selectivity for fish feeding: a rank proportion algorithm. Trans Am Fish Soc 133(3):655–673CrossRefGoogle Scholar
  123. Liquete C, Piroddi C et al (2013) Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS ONE 8(7):e67737CrossRefPubMedPubMedCentralGoogle Scholar
  124. Liu Y, Olaussen JO et al (2014) Fishy fish? The economic impacts of escaped farmed fish. Aquac Econ Manag 18(3):273–302CrossRefGoogle Scholar
  125. Lowry E, Rollinson EJ et al (2013) Biological invasions: a field synopsis, systematic review, and database of the literature. Ecol Evol 3(1):182–196CrossRefPubMedPubMedCentralGoogle Scholar
  126. Macdonald JI, Tonkin ZD et al (2012) Do invasive eastern gambusia (Gambusia holbrooki) shape wetland fish assemblage structure in south-eastern Australia? Mar Freshw Res 63(8):659–671CrossRefGoogle Scholar
  127. Mačić V, Albano PG et al (2018) Biological invasions in conservation planning: a global systematic review. Front Mar Sci 5:178CrossRefGoogle Scholar
  128. Macisaac HJ, Johannsson OE et al (1999) Filtering impacts of an introduced bivalve (Dreissena polymorpha) in a shallow lake: application of a hydrodynamic model. Ecosystems 2(4):338–350CrossRefGoogle Scholar
  129. Magnea U, Sciascia R et al (2013) A model for high-altitude alpine lake ecosystems and the effect of introduced fish. Ecol Model 251:211–220CrossRefGoogle Scholar
  130. Mainali KP, Warren DL et al (2015) Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Glob Change Biol 21(12):4464–4480CrossRefGoogle Scholar
  131. Maris V, Huneman P et al (2017) Prediction in ecology: promises, obstacles and clarifications. Oikos 127:1–12Google Scholar
  132. McGeoch MA, Spear D et al (2012) Uncertainty in invasive alien species listing. Ecol Appl 22(3):959–971CrossRefGoogle Scholar
  133. Metcalf SJ (2010) Qualitative models to complement quantitative ecosystem models for the analysis of data-limited marine ecosystems and fisheries. Rev Fish Sci 18(3):248–265CrossRefGoogle Scholar
  134. Michailidis N, Corrales X et al (2019) Modelling the role of alien species and fisheries in an Eastern Mediterranean insular shelf ecosystem. Ocean Coast Manag 175:152–171CrossRefGoogle Scholar
  135. Miehls ALJ, Mason DM et al (2009) Invasive species impacts on ecosystem structure and function: a comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion. Ecol Model 220(22):3182–3193CrossRefGoogle Scholar
  136. Miller DH, Kreis RG Jr et al (2010) Application of a lower food web ecosystem productivity model for investigating dynamics of the invasive species Bythotrephes longimanus in Lake Michigan. Biol Invasions 12(10):3513–3524CrossRefGoogle Scholar
  137. Moher D, Liberati A et al (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341CrossRefPubMedPubMedCentralGoogle Scholar
  138. Moullec F, Velez L et al (2019) Capturing the big picture of Mediterranean marine biodiversity with an end-to-end model of climate and fishing impacts. Prog Oceanogr 178:102179CrossRefGoogle Scholar
  139. Moustakas A, Katsanevakis S (2018) Data mining and methods for early detection, horizon scanning, modelling, and risk assessment of invasive species. Front Appl Math Stat 4:5CrossRefGoogle Scholar
  140. Muha TP, Rodríguez-Rey M et al (2017) Using environmental DNA to improve species distribution models for freshwater invaders. Front Ecol Evol 5:158CrossRefGoogle Scholar
  141. Murray AG, Parslow JS (1999) Modelling of nutrient impacts in Port Phillip Bay—a semi-enclosed marine Australian ecosystem. Mar Freshw Res 50(6):597–611CrossRefGoogle Scholar
  142. N’Guyen A, Hirsch PE et al (2016) Improving invasive species management by integrating priorities and contributions of scientists and decision makers. Ambio 45(3):280–289CrossRefGoogle Scholar
  143. Nilsson E, Solomon CT et al (2012) Effects of an invasive crayfish on trophic relationships in north-temperate lake food webs. Freshw Biol 57(1):10–23CrossRefGoogle Scholar
  144. Norkko J, Reed DC et al (2012) A welcome can of worms? Hypoxia mitigation by an invasive species. Glob Change Biol 18(2):422–434CrossRefGoogle Scholar
  145. Novoa A, Shackleton R et al (2018) A framework for engaging stakeholders on the management of alien species. J Environ Manag 205:286–297CrossRefGoogle Scholar
  146. Nunes AL, Tricarico E et al (2015) Pathways and gateways of freshwater invasions in Europe. Aquat Invasions 10(4):359–370CrossRefGoogle Scholar
  147. Nyamweya C, Sturludottir E et al (2016) Exploring Lake Victoria ecosystem functioning using the Atlantis modeling framework. Environ Model Softw 86:158–167CrossRefGoogle Scholar
  148. Oguz T, Ducklow HW et al (2001) Modeling the response of top-down control exerted by gelatinous carnivores on the Black Sea pelagic food web. J Geophys Res Oceans (1978–2012) 106(C3):4543–4564CrossRefGoogle Scholar
  149. Oguz T, Salihoglu B et al (2008) A coupled plankton–anchovy population dynamics model assessing nonlinear controls of anchovy and gelatinous biomass in the Black Sea. Mar Ecol Prog Ser 369:229–256CrossRefGoogle Scholar
  150. Ojaveer H, Galil BS et al (2015) Classification of non-indigenous species based on their impacts: considerations for application in marine management. PLoS Biol 13(4):e1002130CrossRefPubMedPubMedCentralGoogle Scholar
  151. Olden JD, Tamayo M (2014) Incentivizing the public to support invasive species management: Eurasian milfoil reduces lakefront property values. PLoS ONE 9(10):e110458CrossRefPubMedPubMedCentralGoogle Scholar
  152. Olden JD, Vander Zanden MJ et al (2011) Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus). Ecol Appl 21(7):2587–2599CrossRefGoogle Scholar
  153. Olson DM, Dinerstein E et al (2001) Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51(11):933–938CrossRefGoogle Scholar
  154. Onikura N, Miyake T et al (2013) Predicting potential hybridization between native and non-native Rhodeus ocellatus subspecies: the implications for conservation of a pure native population in northern Kyushu, Japan. Aquat Invasions 8(2):219–229CrossRefGoogle Scholar
  155. Ortiz M, Stotz W (2007) Ecological and eco-social models for the introduction of the abalone Haliotis discus hannai into benthic systems of north-central Chile: sustainability assessment. Aquat Conserv 17(1):89–105CrossRefGoogle Scholar
  156. Pace ML, Findlay SE et al (1998) Effects of an invasive bivalve on the zooplankton community of the Hudson River. Freshw Biol 39(1):103–116CrossRefGoogle Scholar
  157. Padilla DK, Adolph SC et al (1996) Predicting the consequences of dreissenid mussels on a pelagic food web. Ecol Model 85(2):129–144CrossRefGoogle Scholar
  158. Pagnucco KS, Ricciardi A (2015) Disentangling the influence of abiotic variables and a non-native predator on freshwater community structure. Ecosphere 6(12):1–17CrossRefGoogle Scholar
  159. Palomares M, Pauly D (2017) SeaLifeBase. World Wide Web electronic publication. version (08/2017)
  160. Parravicini V, Azzurro E et al (2015) Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders. Ecol Lett 18(3):246–253CrossRefGoogle Scholar
  161. Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24(9):497–504CrossRefGoogle Scholar
  162. Pigneur LM, Falisse E et al (2014) Impact of invasive Asian clams, Corbicula spp., on a large river ecosystem. Freshw Biol 59(3):573–583CrossRefGoogle Scholar
  163. Pine WE, Kwak TJ et al (2007) Modeling management scenarios and the effects of an introduced apex predator on a coastal riverine fish community. Trans Am Fish Soc 136(1):105–120CrossRefGoogle Scholar
  164. Pinnegar JK, Tomczak MT et al (2014) How to determine the likely indirect food-web consequences of a newly introduced non-native species: a worked example. Ecol Model 272:379–387CrossRefGoogle Scholar
  165. Piria M, Copp GH et al (2017) Tackling invasive alien species in Europe II: threats and opportunities until 2020. Manag Biol Invasions 8(3):273–286CrossRefGoogle Scholar
  166. Piroddi C, Teixeira H et al (2015) Using ecological models to assess ecosystem status in support of the European Marine Strategy Framework Directive. Ecol Ind 58:175–191CrossRefGoogle Scholar
  167. Plagányi ÉE, Punt AE et al (2014) Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish 15(1):1–22CrossRefGoogle Scholar
  168. Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55CrossRefGoogle Scholar
  169. Pyšek P, Richardson DM et al (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23(5):237–244CrossRefGoogle Scholar
  170. Ramsey D, Veltman C (2005) Predicting the effects of perturbations on ecological communities: what can qualitative models offer? J Anim Ecol 74(5):905–916CrossRefGoogle Scholar
  171. Reed-Andersen T, Carpenter SR et al (2000) Predicted impact of zebra mussel (Dreissena polymorpha) invasion on water clarity in Lake Mendota. Can J Fish Aquat Sci 57(8):1617–1626CrossRefGoogle Scholar
  172. Ricciardi A (2003) Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshw Biol 48(6):972–981CrossRefGoogle Scholar
  173. Ricciardi A, Rasmussen JB (1999) Extinction rates of North American freshwater fauna. Conserv Biol 13(5):1220–1222CrossRefGoogle Scholar
  174. Ricciardi A, Rasmussen J et al (1995) Predicting the intensity and impact of Dreissena infestation on native unionid bivalves from Dreissena field density. Can J Fish Aquat Sci 52(7):1449–1461CrossRefGoogle Scholar
  175. Ricciardi A, Hoopes MF et al (2013) Progress toward understanding the ecological impacts of nonnative species. Ecol Monogr 83(3):263–282CrossRefGoogle Scholar
  176. Robson BJ (2014) State of the art in modelling of phosphorus in aquatic systems: review, criticisms and commentary. Environ Model Softw 61:339–359CrossRefGoogle Scholar
  177. Romanuk TN, Zhou Y et al (2009) Predicting invasion success in complex ecological networks. Philos Trans R Soc B Biol Sci 364(1524):1743–1754CrossRefGoogle Scholar
  178. Rose KA, Allen JI et al (2010) End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps. Mar Coast Fish 2(1):115–130CrossRefGoogle Scholar
  179. Rosenberg AA, McLeod KL (2005) Implementing ecosystem-based approaches to management for the conservation of ecosystem services. Mar Ecol Prog Ser 300:270–274CrossRefGoogle Scholar
  180. Rowe DK (2007) Exotic fish introductions and the decline of water clarity in small North Island, New Zealand lakes: a multi-species problem. Hydrobiologia 583(1):345–358CrossRefGoogle Scholar
  181. Rowe MD, Anderson EJ et al (2015a) Modeling the effect of invasive quagga mussels on the spring phytoplankton bloom in Lake Michigan. J Great Lakes Res 41:49–65CrossRefGoogle Scholar
  182. Rowe MD, Obenour DR et al (2015b) Mapping the spatial distribution of the biomass and filter-feeding effect of invasive dreissenid mussels on the winter-spring phytoplankton bloom in Lake Michigan. Freshw Biol 60(11):2270–2285CrossRefGoogle Scholar
  183. Roy ED, Martin JF et al (2011) Living within dynamic social-ecological freshwater systems: system parameters and the role of ecological engineering. Ecol Eng 37(11):1661–1672CrossRefGoogle Scholar
  184. Schwalb AN, Bouffard D et al (2014) 3D modelling of dreissenid mussel impacts on phytoplankton in a large lake supports the nearshore shunt hypothesis and the importance of wind-driven hydrodynamics. Aquat Sci 77(1):95–114CrossRefGoogle Scholar
  185. Seebens H, Schwartz N et al (2016) Predicting the spread of marine species introduced by global shipping. Proc Natl Acad Sci 113(20):5646–5651CrossRefGoogle Scholar
  186. Seebens H, Blackburn TM et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435CrossRefPubMedPubMedCentralGoogle Scholar
  187. Settle C, Shogren JF (2002) Modeling native-exotic species within Yellowstone Lake. Am J Agric Econ 84(5):1323–1328CrossRefGoogle Scholar
  188. Sharma S, Vander Zanden MJ et al (2011) Comparing climate change and species invasions as drivers of coldwater fish population extirpations. PLoS ONE 6(8):e22906CrossRefPubMedPubMedCentralGoogle Scholar
  189. Sigsgaard EE, Carl H et al (2015) Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol Cons 183:46–52CrossRefGoogle Scholar
  190. Simberloff D, Martin J-L et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28(1):58–66CrossRefGoogle Scholar
  191. Spalding MD, Fox HE et al (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57(7):573–583CrossRefGoogle Scholar
  192. Stapanian MA, Kocovsky PM et al (2009) Change in diel catchability of young-of-year yellow perch associated with establishment of dreissenid mussels. Freshw Biol 54(8):1593–1604CrossRefGoogle Scholar
  193. Stapp P, Hayward GD (2002) Effects of an introduced piscivore on native trout: insights from a demographic model. Biol Invasions 4(3):299–316CrossRefGoogle Scholar
  194. Statgraphics-Centurion (2009) Statpoint technologies. INC. version 16.1.11 (32-bits)Google Scholar
  195. Steenbeek J, Coll M et al (2013) Bridging the gap between ecosystem modeling tools and geographic information systems: driving a food web model with external spatial–temporal data. Ecol Model 263:139–151CrossRefGoogle Scholar
  196. Stelzenmüller V, Coll M et al (2018) A risk-based approach to cumulative effect assessments for marine management. Sci Total Environ 612:1132–1140CrossRefGoogle Scholar
  197. Stewart TJ, O’Gorman R et al (2010) The bioenergetic consequences of invasive-induced food web disruption to lake Ontario alewives. North Am J Fish Manag 30(6):1485–1504CrossRefGoogle Scholar
  198. Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55(s1):152–174CrossRefGoogle Scholar
  199. Thompson RM, Brose U et al (2012) Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 27(12):689–697CrossRefGoogle Scholar
  200. Thompson LC, Giusti GA et al (2013) The native and introduced fishes of Clear Lake: a review of the past to assist with decisions of the future. Calif Fish Game 99(1):7–41Google Scholar
  201. Thoms MC (2006) Variability in riverine ecosystems. River Res Appl 22(2):115–121CrossRefGoogle Scholar
  202. Thomsen MS, Byers JE et al (2014) Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar Ecol Prog Ser 495:39–47CrossRefGoogle Scholar
  203. Townhill B, Pinnegar J et al (2017) Non-native marine species in north-west Europe: developing an approach to assess future spread using regional downscaled climate projections. Aquat Conserv 27(5):1035–1050CrossRefGoogle Scholar
  204. Travers M, Shin Y-J et al (2007) Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems. Prog Oceanogr 75(4):751–770CrossRefGoogle Scholar
  205. UNESCO (2017) How much does your country invest in R&D? Retrieved 4 January 2017
  206. Valentini A, Pompanon F et al (2009) DNA barcoding for ecologists. Trends Ecol Evol 24(2):110–117CrossRefGoogle Scholar
  207. Van Guilder MA, Seefelt NE (2013) Double-crested cormorant (Phalacrocorax auritus) chick bioenergetics following round goby (Neogobius melanostomus) invasion and implementation of cormorant population control. J Great Lakes Res 39(1):153–161CrossRefGoogle Scholar
  208. Van Zuiden TM, Sharma S et al (2016) Examining the effects of climate change and species invasions on Ontario walleye populations: can walleye beat the heat? Divers Distrib 22(10):1069–1079CrossRefGoogle Scholar
  209. Vilà M, Hulme PE (2017) Impact of biological invasions on ecosystem services. Springer, BerlinCrossRefGoogle Scholar
  210. Vilà M, Basnou C et al (2009) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8(3):135–144CrossRefGoogle Scholar
  211. Volovik YS, Volovik SP et al (1995) Modelling of the Mnemiopsis sp. population in the Azov Sea. ICES J Mar Sci 52(3–4):735–746CrossRefGoogle Scholar
  212. Walrath JD, Quist MC et al (2015) Trophic ecology of nonnative northern pike and their effect on conservation of native Westslope cutthroat trout. North Am J Fish Manag 35(1):158–177CrossRefGoogle Scholar
  213. Wenger SJ, Isaak DJ et al (2011) Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc Natl Acad Sci USA 108(34):14175–14180CrossRefGoogle Scholar
  214. Whipple SJ, Link JS et al (2000) Models of predation and fishing mortality in aquatic ecosystems. Fish Fish 1(1):22–40CrossRefGoogle Scholar
  215. Wisz MS, Pottier J et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88(1):15–30CrossRefGoogle Scholar
  216. Wonham MJ, Lewis MA (2009) Modeling marine invasions: current and future approaches. Springer, Berlin, pp 71–105Google Scholar
  217. Woodford DJ, Cochrane TA et al (2011) Modelling spatial exclusion of a vulnerable native fish by introduced trout in rivers using landscape features: a new tool for conservation management. Aquat Conserv 21(5):484–493CrossRefGoogle Scholar
  218. Yurista PM, Schulz KL (1995) Bioenergetic analysis of prey consumption by Bythotrephes cederstroemi in Lake Michigan. Can J Fish Aquat Sci 52(1):141–150CrossRefGoogle Scholar
  219. Zar JH (2013) Biostatistical analysis: Pearson new international edition. Pearson Higher Ed, New York CityGoogle Scholar
  220. Zhang H, Culver DA et al (2008) A two-dimensional ecological model of Lake Erie: application to estimate dreissenid impacts on large lake plankton populations. Ecol Model 214(2):219–241CrossRefGoogle Scholar
  221. Zhang H, Culver DA et al (2011) Dreissenids in Lake Erie: an algal filter or a fertilizer? Aquat Invasions 6(2):175–194CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kinneret Limnological LaboratoryIsrael Oceanographic and Limnological ResearchMigdalIsrael
  2. 2.Institut de Ciències del Mar (ICM-CSIC)BarcelonaSpain
  3. 3.AZTISukarrietaSpain
  4. 4.Department of Marine SciencesUniversity of the Aegean, University HillMytileneGreece
  5. 5.Ecopath International Initiative Research AssociationBarcelonaSpain
  6. 6.Scottish Association for Marine Science, Scottish Marine InstituteObanUK
  7. 7.European Marine BoardOstendBelgium
  8. 8.European Commission, Joint Research Centre (JRC)Directorate D – Sustainable ResourcesIspraItaly

Personalised recommendations