Skip to main content
Log in

Trophic shifts in a native predator following the introduction of a top predator in a tropical lake

Biological Invasions Aims and scope Submit manuscript

Abstract

Some of the most dramatic and well-studied impacts of introduced predators involve their ecological effects on native prey communities. However, how native predators respond to introduced predators has received less attention. Here, we examined the potential impacts of an introduced predatory fish (Cichla monoculus, the peacock bass) on the diet and trophic ecology of a native predator (Hoplias microlepis) in Lake Gatun, Panama. We used stomach content analysis and stable isotope analysis to quantify the dietary niche of both species in sympatry, and of the native predator in the presence vs. absence of the peacock bass. We found that in the presence of the peacock bass, H. microlepis had a more diverse diet and a wider (five-fold) isotopic niche, relative to where it occurred alone. Specifically, H. microlepis, which were predominantly piscivorous in the absence of peacock bass, broadened their diet in the invaded Lake Gatun to include invertebrates and scavenged fish, the latter comprising 26% of its diet. Scavenged fish consisted of C. monoculus and Oreochromis niloticus (Nile tilapia) remains, both heavily harvested, non-native species in Lake Gatun, whose scraps are often thrown back into the lake by fishers. We suspect that these human-mediated food subsidies may lead to indirect facilitative interactions between introduced and native species in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Angermeier PL, Karr JR (1983) Fish communities along environmental gradients in a system of tropical streams. Environ Biol Fishes 9:117–135

    Article  Google Scholar 

  • Anson JR, Dickman CR, Boonstra R, Jessop TS (2013) Stress triangle: do introduced predators exert indirect costs on native predators and prey? PLoS ONE 8:e60916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacheler N, Neal J, Noble R (2004) Diet overlap between native bigmouth sleepers (Gobiomorus dormitor) and introduced predatory fishes in a Puerto Rico reservoir. Ecol Freshw Fish 13:111–118

    Article  Google Scholar 

  • Bøhn T, Amundsen PA (2001) The competitive edge of an invading specialist. Ecology 82:2150–2163

    Article  Google Scholar 

  • Bøhn T, Amundsen PA, Sparrow A (2008) Competitive exclusion after invasion? Biol Invasions 10:359–368

    Article  Google Scholar 

  • Busacker GP, Adelman IR, Goolish EM (1990) Growth. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Bethesda, pp 363–387

    Google Scholar 

  • Bussing WA (1998) Freshwater fishes of Costa Rica. Editorial Universidad de Costa Rica, San José

    Google Scholar 

  • Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci 93:10844–10847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capra L, Bennemann S (2009) Low feeding overlap between Plagioscion squamosissimus (Heckel, 1840) and Cichla monoculus (Spix & Agassiz, 1831), fishes introduced in tropical reservoir of South Brazil. Acta Limnol Bras 21:343–348

    Google Scholar 

  • Carvalho LN, Fernandes CHV, Moreira VSS (2009) Alimentação de Hoplias malabaricus (Bloch, 1794)(Osteichthyes, Erythrinidae) no rio Vermelho, Pantanal Sul Mato-Grossense. Revista Brasileira de Zoociências 4:227–236

    Google Scholar 

  • Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228

    Article  Google Scholar 

  • Cohen AN (2006) Chapter III species introductions and the Panama Canal. In: Gollasch S, Galil BS, Cohen AN (eds) Bridging divides. Springer, Dordrecht, pp 127–206

    Chapter  Google Scholar 

  • Córdova-Tapia F, Contreras M, Zambrano L (2015) Trophic niche overlap between native and non-native fishes. Hydrobiologia 746:291–301

    Article  Google Scholar 

  • Correa C, Bravo AP, Hendry AP (2012) Reciprocal trophic niche shifts in native and invasive fish: salmonids and galaxiids in Patagonian lakes. Freshw Biol 57:1769–1781

    Article  Google Scholar 

  • Cortés E (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can J Fish Aquat Sci 54:726–738

    Article  Google Scholar 

  • Côté IM, Green SJ, Morris JA Jr, Akins JL, Steinke D (2013) Diet richness of invasive Indo-Pacific lionfish revealed by DNA barcoding. Mar Ecol Prog Ser 472:249–256

    Article  Google Scholar 

  • Cox JG, Lima SL (2006) Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol Evol 21:674–680

    Article  PubMed  Google Scholar 

  • Dinno A (2017) R Package ‘dunn.test’. https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf

  • Dudgeon D et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  PubMed  Google Scholar 

  • Eigenmann CH, Eigenmann RS (1889) A review of the Erythrininae. Proc Calif Acad Sci 2:100–117

    Google Scholar 

  • Fugi R, Luz-Agostinho KG, Agostinho A (2008) Trophic interaction between an introduced (peacock bass) and a native (dogfish) piscivorous fish in a neotropical impounded river. Hydrobiologia 607:143–150

    Article  Google Scholar 

  • Glen AS, Dickman CR (2005) Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol Rev 80:387–401

    Article  PubMed  Google Scholar 

  • Gomiero L, Braga FMdS (2004) Feeding of introduced species of Cichla (Perciformes, Cichlidae) in Volta Grande reservoir, river Grande (MG/SP). Braz J Biol 64:787–795

    Article  CAS  PubMed  Google Scholar 

  • González R (1993) Actualidad de las pesquerías del pez sargento (Cichla ocellaris) en el lago Gatún. Revista Universidad 48:87–95

    Google Scholar 

  • Guzzo MM, Haffner GD, Legler ND, Rush SA, Fisk AT (2013) Fifty years later: trophic ecology and niche overlap of a native and non-indigenous fish species in the western basin of Lake Erie. Biol Invasions 15:1695–1711

    Article  Google Scholar 

  • Hanna DEL, Buck DG, Chapman LJ (2015) Effects of habitat on mercury concentrations in fish: a case study of Nile perch (Lates niloticus) in Lake Nabugabo, Uganda. Ecotoxicology 25:1–14

    Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Santin L, Goldizen AW, Fisher DO (2016) Introduced predators and habitat structure influence range contraction of an endangered native predator, the northern quoll. Biol Conserv 203:160–167

    Article  Google Scholar 

  • Hildebrand SF (1938) A new catalogue of the freshwater fishes of Panama. Field Museum of Natural History, Zoological Series

    Book  Google Scholar 

  • Hyslop E (1980) Stomach contents analysis—a review of methods and their application. J Fish Biol 17:411–429

    Article  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER–Stable isotope bayesian ellipses in R. J Animal Ecol 80:595–602

    Article  Google Scholar 

  • Jepsen DB, Winemiller KO, Taphorn DC (1997) Temporal patterns of resource partitioning among Cichla species in a Venezuelan blackwater river. J Fish Biol 51:1085–1108

    CAS  PubMed  Google Scholar 

  • King R, Ray J, Stanford K (2006) Gorging on gobies: beneficial effects of alien prey on a threatened vertebrate. Can J Zool 84:108–115

    Article  Google Scholar 

  • Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. Science 299:1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Latini A, Petrere M (2004) Reduction of a native fish fauna by alien species: an example from Brazilian freshwater tropical lakes. Fish Manag Ecol 11:71–79

    Article  Google Scholar 

  • Layman CA, Winemiller KO, Arrington DA (2005a) Describing a species-rich river food web using stable isotopes, stomach contents, and functional experiments. In: de Ruiter PC, Wolters V, Moore JC (eds) Dynamic food webs: multispecies assemblages, ecosystem development and environmental change. Elsevier, Amsterdam, pp 395–496

    Chapter  Google Scholar 

  • Layman CA, Winemiller KO, Arrington DA, Jepsen DB (2005b) Body size and trophic position in a diverse tropical food web. Ecology 86:2530–2535

    Article  Google Scholar 

  • Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    Article  PubMed  Google Scholar 

  • Locke SA, Bulté G, Forbes MR, Marcogliese DJ (2013) Estimating diet in individual pumpkinseed sunfish Lepomis gibbosus using stomach contents, stable isotopes and parasites. J Fish Biol 82:522–537

    Article  CAS  PubMed  Google Scholar 

  • Mattox GM, Bifi AG, Oyakawa OT (2014) Taxonomic study of Hoplias microlepis (Günther, 1864), a trans-Andean species of trahiras (Ostariophysi: Characiformes: Erythrinidae). Neotrop Ichthyol 12:343–352

    Article  Google Scholar 

  • Meek SE, Hildebrand SF (1916) The fishes of the freshwaters of Panama. Field Museum of Natural History, Zoological Series

  • Newsome TM, Dellinger JA, Pavey CR, Ripple WJ, Shores CR, Wirsing AJ, Dickman CR (2015) The ecological effects of providing resource subsidies to predators. Glob Ecol Biogeogr 24:1–11

    Article  Google Scholar 

  • Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  PubMed  Google Scholar 

  • Oliveros O, Rossi L (1991) Ecología trófica de Hoplias malabaricus malabaricus (Pisces, Erythrinidae). Rev Asoc Cienc Nat Litoral 22:55–68

    Google Scholar 

  • Olowo J, Chapman LJ (1999) Trophic shifts in predatory catfishes following the introduction of Nile perch into Lake Victoria. Afr J Ecol 37:457–470

    Article  Google Scholar 

  • Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez-Abraín A (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514

    Article  PubMed  Google Scholar 

  • Ortiz-Sandoval J, Górski K, Sobenes C, González J, Manosalva A, Elgueta A, Habit E (2017) Invasive trout affect trophic ecology of Galaxias platei in Patagonian lakes. Hydrobiologia 790:201–212

    Article  CAS  Google Scholar 

  • Paiva MP (1974) Crescimento, alimentação e reprodução da traíra, Hoplias malabaricus (Bloch), no nordeste brasileiro. Imprensa Universitária da Universidade Federal do Ceará

  • Parnell AC, Jackson AL (2015) R Package ‘siar’. https://cran.r-project.org/web/packages/siar/siar.pdf

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Petry AC, Gomes LC, Piana PA et al (2010) The role of the predatory trahira (Pisces: Erythrinidae) in structuring fish assemblages in lakes of a Neotropical floodplain. Hydrobiologia 651:115–126

    Article  Google Scholar 

  • Pilger TJ, Gido KB, Propst DL (2010) Diet and trophic niche overlap of native and nonnative fishes in the Gila River, USA: implications for native fish conservation. Ecol Freshw Fish 19:300–321

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    PubMed  Google Scholar 

  • PREPAC (2005) Inventario de cuerpos de agua continentales de la República de Panamá con énfasis en la pesca y la acuicultura. MIDA-OSPESCA

  • Rabelo H, Araújo-Lima CARM (2002) A dieta e o consumo diário de alimento de Cichla monoculus na Amazônia Central. Acta Amazon 32:707–724

    Article  Google Scholar 

  • Reis RE, Kullander SO, Ferraris CJ (2003) Check list of the freshwater fishes of South and Central America. Edipucrs, Porto Alegre

    Google Scholar 

  • Ricciardi A, MacIsaac HJ (2011) Impacts of biological invasions on freshwater ecosystems. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Hoboken, pp 211–224

    Google Scholar 

  • Rodriguez LF (2006) Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927–939

    Article  Google Scholar 

  • Roy HE et al (2012) Invasive alien predator causes rapid declines of native European ladybirds. Divers Distrib 18:717–725

    Article  Google Scholar 

  • Salo P, Korpimäki E, Banks PB, Nordström M, Dickman CR (2007) Alien predators are more dangerous than native predators to prey populations. Proc R Soc Lond B Biol Sci 274:1237–1243

    Article  Google Scholar 

  • Schlaepfer MA, Sax DF, Olden JD (2011) The potential conservation value of non-native species. Conserv Biol 25:428–437

    Article  PubMed  Google Scholar 

  • Schoener TW (1968) The anolis lizards of bimini: resource partitioning in a complex fauna. Ecology 49:704–726

    Article  Google Scholar 

  • Shafland PL (1999) The introduced butterfly peacock (Cichla ocellaris) in Florida. II. Food and reproductive biology. Rev Fish Sci 7:95–113

    Article  Google Scholar 

  • Sharpe DMT, De León LF, González R, Torchin ME (2017) Tropical fish community does not recover 45 years after predator introduction. Ecology 98:412–424

    Article  CAS  PubMed  Google Scholar 

  • Sih A et al (2010) Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621

    Article  Google Scholar 

  • Snyder WE, Evans EW (2006) Ecological effects of invasive arthropod generalist predators. Annu Rev Ecol Evol Syst 37:95–122

    Article  Google Scholar 

  • Snyder WE, Clevenger GM, Eigenbrode SD (2004) Intraguild predation and successful invasion by introduced ladybird beetles. Oecologia 140:559–565

    Article  PubMed  Google Scholar 

  • Syväranta J, Lensu A, Marjomäki TJ et al (2013) An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS ONE 8:e56094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  • Vander Zanden MJ, Casselman JM, Rasmussen JB (1999) Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464–467

    Article  CAS  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    PubMed  Google Scholar 

  • Vitousek PM, D’antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • Votier SC, Bearhop S, Witt MJ, Inger R, Thompson D, Newton J (2010) Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J Appl Ecol 47:487–497

    Article  Google Scholar 

  • White EM, Wilson JC, Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion biology. Divers Distrib 12:443–455

    Article  Google Scholar 

  • Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135

    Article  PubMed  Google Scholar 

  • Winemiller KO (1989) Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan llanos. Environ Biol Fishes 26:177–199

    Article  Google Scholar 

  • Winemiller KO, Taphorn DC, Barbarino-Duque A (1997) Ecology of Cichla (Cichlidae) in two blackwater rivers of southern Venezuela. Copeia 4:690–696

    Article  Google Scholar 

  • Yuille MJ, Fisk AT, Stewart T, Johnson TB (2015) Evaluation of Lake Ontario salmonid niche space overlap using stable isotopes. J Great Lakes Res 41:934–940

    Article  Google Scholar 

  • Zaret TM, Paine R (1973) Species introduction in a tropical lake. Science 182:449–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Bravo, R. González, C. Schloeder and J. Pereira for their invaluable field and laboratory assistance. We are grateful to the fishing communities of Cuipo, Gamboa, La Laguna, Emberá-Wounan, and Bayano for their extraordinary help in the field. We would also like to thank the staff in STRI’s Naos Laboratories, particularly C. Bonilla, for their logistical support. We thank the Associate Editor and two anonymous reviewers whose constructive feedback greatly improved this manuscript. This work was supported by CONACyT (Consejo Nacional de Ciencia y Tecnología, M.Sc. Fellowship to MPV), McGill University Department of Biology (NEO/BESS programs), Quebec Center for Biodiversity Science (QCBS, Excellence Award to MPV), STRI (Smithsonian Tropical Research Institute), and Canada Research Chair funds to LJC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisol P. Valverde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals

Our field sampling and handling of live organisms complied with Panama’s Ministerio del Ambiente (Permit # SE/AP-40-15) and STRI’s Institutional Animal Care Committee (Protocol # 2016-0224-2019).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valverde, M.P., Sharpe, D.M.T., Torchin, M.E. et al. Trophic shifts in a native predator following the introduction of a top predator in a tropical lake. Biol Invasions 22, 643–661 (2020). https://doi.org/10.1007/s10530-019-02119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-02119-1

Keywords

Navigation