Hypothesis: Do invasive house geckos exacerbate dengue fever epidemics?

Abstract

Dengue fever is a mosquito-borne disease that has undergone a marked rise in incidence since the 1950s, throughout the world’s tropical regions. Here, we present a hypothesis that this rise in incidence may have been exacerbated by the invasion of house geckos, due to their role in the mosquito vector food web. Previous research has shown that in the absence of a top predator, house geckos reach high densities, directly affecting spider densities and indirectly resulting in higher Aedes-mosquito densities. Hence, we expect that in areas where house geckos are invasive and an effective top predator is lacking, Aedes densities will be higher, resulting in a higher dengue fever incidence rate. We perform a preliminary test of this hypothesis by looking for patterns in secondary country-level data to estimate the global range of invasive house gecko species over time. We related these estimated ranges to variation in the number of per capita dengue cases in 80 different countries. The incidence of dengue was significantly higher in countries where house geckos were introduced, when compared with countries where it was either native or absent. In addition, in countries where house geckos were introduced earlier and had time to become naturalized, dengue fever incidence rates were higher than for countries where house geckos were introduced more recently. These results suggest that house geckos could indeed have played a role in the rise of dengue in tropical countries. Here, we present a framework for the required experimental research to test the mechanism underlying these observations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahlburg A (1996) Demographic and social change in the island nations of the Pacific. Asia Pac Popul Res Rep 7:1–27

    Google Scholar 

  2. Anderson DR (2008) Model based inference in the life sciences: a primer on evidence. Springer, New York

    Google Scholar 

  3. Angel S, Parent J, Civco DL, Blei AM (2012) Atlas of urban expansion. Library of congress cataloging-in-publication data, Lincoln Institute of Land Policy. https://doi.org/10.5860/choice.50-1227

  4. Bartoń K (2013) MuMIn: multi-model inference. https://r-forge.r-project.org/R/?group_id=346. Accessed 12 Sept 2014

  5. Betanzos-Reyes ÁF, Rodríguez MH, Romero-Martínez M et al (2018) Association of dengue fever with Aedes spp. abundance and climatological effects. Salud Publica Mex 60:12–20. https://doi.org/10.21149/8141

    Article  PubMed  Google Scholar 

  6. Brunkard JM, Cifuentes E, Rothenberg SJ (2008) Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. Salud Publica Mex 50:227–234. https://doi.org/10.1590/S0036-36342008000300006

    Article  PubMed  Google Scholar 

  7. Caillabet O (2013) The trade in tokay geckos in South-East Asia: with a case study on novel medicinal claims in Peninsular Malaysia. Selangor

  8. Canyon DV, Hii JLK (1997) The gecko: an environmentally friendly biological agent for mosquito control. Med Vet Entomol 11:319–323. https://doi.org/10.1111/j.1365-2915.1997.tb00416.x

    CAS  Article  PubMed  Google Scholar 

  9. Case TJ, Bolger DT, Petren K et al (1994) Invasions and competitive displacement among house geckos in the tropical Pacific. Ecology 75:464–477

    Article  Google Scholar 

  10. Christopher SR (1960) Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. Cambridge University Press, Cambridge

    Google Scholar 

  11. Clements AN (2012) The biology of mosquitoes: volume 3, transmission of viruses and interactions with bacteria. CABI, Wallingford

    Google Scholar 

  12. Cole NC, Jones CG, Harris S (2005) The need for enemy-free space: the impact of an invasive gecko on island endemics. Biol Conserv 125:467–474. https://doi.org/10.1016/j.biocon.2005.04.017

    Article  Google Scholar 

  13. Cox J, Grillet ME, Ramos OM et al (2007) Habitat segregation of dengue vectors along an urban environmental gradient. Am J Trop Med Hyg 76:820–826. https://doi.org/10.4269/ajtmh.2007.76.820

    Article  PubMed  Google Scholar 

  14. Cromwell EA, Stoddard ST, Barker CM et al (2017) The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl Trop Dis 11:1–22. https://doi.org/10.1371/journal.pntd.0005429

    Article  Google Scholar 

  15. Cummings DAT, Irizarry RA, Huang NE, Endy TP, Nisalak A, Ungchusak K, Burke DS (2004) Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427:344–347

    CAS  Article  Google Scholar 

  16. FAO (2017). FAOSTAT—food and agriculture data. Food and Agriculture Organization of the United Nations, Rome. http://fenixservices.fao.org/faostat/static/bulkdownloads/FAOSTAT.zip Accessed 16 Dec 2017

  17. GBIF (2017). The global biodiversity facility: GBIF backbone taxonomy. Copenhagen. https://www.gbif.org/. Accessed 10 Dec 2017

  18. Hales S, de Wet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834

    Article  Google Scholar 

  19. Herrera-Basto E, Prevots DR, Zarate ML, Silva JL, Sepulveda-Amor J (1992) First reported outbreak of classical dengue fever at 1,700 meters above sea level in Guerrero State, Mexico, June 1988. Am J Trop Med Hyg 46:649–653

    CAS  Article  Google Scholar 

  20. Hoskin CJ (2011) The invasion and potential impact of the Asian House Gecko (Hemidactylus frenatus) in Australia. Austral Ecol 36:240–251. https://doi.org/10.1111/j.1442-9993.2010.02143.x

    Article  Google Scholar 

  21. Howard KG, Parmerlee JS, Powell R (2001) Natural history of the edificarian geckos Hemidactylus mabouia, Thecadactylus rapicauda, and Sphaerodactylus sputator on Anguilla. Caribb J Sci 37:285–288

    Google Scholar 

  22. Meshaka WE Jr, Marshall SD, Boundy J, Williams AA (2006) Status and geographic expansion of the Mediterranean gecko, Hemidactylus turcicus, in Louisiana: implications for the southeastern United States. Herpetol Conserv Biol 1:45–50. https://doi.org/10.1227/01.NEU.0000103445.25535.0E

    Article  Google Scholar 

  23. Newbery B, Jones DN (2007) Presence of Asian house gecko Hemidactylus frenatus across an urban gradient in Brisbane: influence of habitat and potential for impact on native gecko species. In: Lunney D, Eby P, Hutchings P, Burgin S (eds) Pest or guest: the zoology over-abundance. Royal Zoological Society of New South Wales, Mosman, pp 59–65

    Google Scholar 

  24. Nijman V, Nekaris A (2012) Asian medicine: small species at risk. Nature 481:265

    CAS  Article  Google Scholar 

  25. Padmanabha H, Durham D, Correa F et al (2012) The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Negl Trop Dis 6:e1799. https://doi.org/10.1371/journal.pntd.0001799

    Article  PubMed  PubMed Central  Google Scholar 

  26. Patz JA (1996) Global climate change and emerging infectious diseases. JAMA J Am Med Assoc 275:217. https://doi.org/10.1001/jama.1996.03530270057032

    CAS  Article  Google Scholar 

  27. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  28. Reiskind MH, Wund MA (2009) Experimental assessment of the impacts of northern long-eared bats on ovipositing Culex (Diptera: Culicidae) mosquitoes. J Med Entomol 46:1037–1044. https://doi.org/10.1603/033.046.0510

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rödder D, Solé M, Böhme W (2008) Predicting the potential distribution of two alien invasive house geckos (Hemidactylus frenatus, Hemidactylus mabouia) under climate change. North West J Zool 4:236–246

    Google Scholar 

  30. Rogers DJ, Wilson AJ, Hay SI, Graham AJ (2006) The global distribution of yellow fever and dengue. Adv Parasitol 62:181–220

    CAS  Article  Google Scholar 

  31. Rstudio (2017) RStudio: integrated development environment for R (version 1.1.383). RStudio, Boston

    Google Scholar 

  32. Shaalan EAS, Canyon DV (2009) Aquatic insect predators and mosquito control. Trop Biomed 26:223–261

    PubMed  Google Scholar 

  33. Strickman D et al (1997) Bionomics of the spider, Crossopriza Lyoni (Araneae, Pholcidae), a predator of dengue vectors in Thailan. J Arachnol 25(194–20):1. https://doi.org/10.2307/3705644

    Article  Google Scholar 

  34. Subramanean J, Reddy MV (2012) Monitor lizards and geckos used in traditional medicine face extinction and need protection. Curr Sci 102:1248

    Google Scholar 

  35. Thavara U, Tawatsin A, Chansang C et al (2001) Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand. J Vector Ecol 26:172–180

    CAS  PubMed  Google Scholar 

  36. Tipayamongkholgu M, Lisakulruk S (2011) Socio-geographical factors in vulnerability to dengue in Thai villages: a spatial regression analysis. Geospat Health 5:191–198. https://doi.org/10.4081/gh.2011.151

    Article  Google Scholar 

  37. Tkaczenko GK, Weterings R, Weterings R (2014) Prey preference of the common house geckos Hemidactylus frenatus and Hemidactylus Platyurus. Herpetol Notes 7:483–488

    Google Scholar 

  38. Vanwambeke SO et al (2007) Impact of land-use change on dengue and Malaria in Northern Thailand. EcoHealth 4:37–51

    Article  Google Scholar 

  39. Weterings R, Vetter KC (2017) Invasive house geckos (Hemidactylus spp.): their current, potential and future distribution. Curr Zool 64:407. https://doi.org/10.1093/cz/zox067

    Article  PubMed  PubMed Central  Google Scholar 

  40. Weterings R, Umponstira C, Buckley HL (2014a) Container-breeding mosquitoes and predator community dynamics along an urban-forest gradient: the effects of habitat type and isolation. Basic Appl Ecol 15:486–495. https://doi.org/10.1016/j.baae.2014.07.006

    Article  Google Scholar 

  41. Weterings R, Umponstira C, Buckley HL (2014b) Predation on mosquitoes by common Southeast Asian house-dwelling jumping spiders (Salticidae). Arachnology 16:122–127

    Article  Google Scholar 

  42. Weterings R, Umponstira C, Buckley HL (2018) Landscape variation influences trophic cascades in dengue vector food webs. Sci Adv 4:9

    Article  Google Scholar 

  43. WHO (2014) Factsheet no. 117 dengue and severe dengue. World Health Organization, Geneva

    Google Scholar 

  44. WHO (2017) DengueNet. World Health Organization, Geneva. http://www.who.int/denguenet. Accessed 14 Dec 2017

  45. World Bank (2017). World development indicators. World Bank, Washington. https://data.worldbank.org/indicator/. Accessed 14 Dec 2017

  46. Wu PC, Lay JG, Guo HR et al (2009) Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407:2224–2233. https://doi.org/10.1016/j.scitotenv.2008.11.034

    CAS  Article  PubMed  Google Scholar 

  47. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Bradley Case and Dr. Chanin Umponstira for their kind support, the Faculty of Agriculture, Natural Resources and Environment at Naresuan University, and the Cat Drop Foundation, for the funding and providing resources used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robbie Weterings.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weterings, R., Barbetti, M. & Buckley, H.L. Hypothesis: Do invasive house geckos exacerbate dengue fever epidemics?. Biol Invasions 21, 3533–3543 (2019). https://doi.org/10.1007/s10530-019-02066-x

Download citation

Keywords

  • House geckos
  • Hemidactylus
  • Gehyra
  • Dengue fever